
Kotti Documentation
Release 0.6

Daniel Nouri

October 30, 2012

CONTENTS

i

ii

Kotti Documentation, Release 0.6

Kotti is a high-level, Pythonic web application framework. It includes a small and extensible CMS application called
the Kotti CMS.

Kotti is most useful when you are developing applications that

• have complex security requirements,

• use workflows, and/or

• work with hierarchical data.

Built on top of a number of best-of-breed software components, most notably Pyramid and SQLAlchemy, Kotti intro-
duces only a few concepts of its own, thus hopefully keeping the learning curve flat for the developer.

CONTENTS 1

http://docs.pylonsproject.org/projects/pyramid/dev/
http://www.sqlalchemy.org/

Kotti Documentation, Release 0.6

2 CONTENTS

CHAPTER

ONE

KOTTI CMS

You can try out the built-in CMS on Kotti’s demo page.

The Kotti CMS is a content management system that’s heavily inspired by Plone. Its main features are:

• User-friendliness: editors can edit content where it appears; thus the edit interface is contextual and intuitive

• WYSIWYG editor: includes a rich text editor

• Responsive design: Kotti builds on Twitter Bootstrap, which looks good both on desktop and mobile

• Templating: you can extend the CMS with your own look & feel with almost no programming required (see
Adjust the look & feel (kotti.asset_overrides))

• Add-ons: install a variety of add-ons and customize them as well as many aspects of the built-in CMS by use
of an INI configuration file (see Configuration)

• Security: the advanced user and permissions management is intuitive and scales to fit the requirements of large
organizations

• Internationalized: the user interface is fully translatable, Unicode is used everywhere to store data (see Trans-
lations)

3

http://kottidemo.danielnouri.org/
http://plone.org/
http://twitter.github.com/bootstrap/

Kotti Documentation, Release 0.6

4 Chapter 1. Kotti CMS

CHAPTER

TWO

FOR DEVELOPERS

For developers, Kotti delivers a strong foundation for building different types of web applications that either extend or
replace the built-in CMS.

Developers can add and modify through a well-defined API:

• views,

• templates and layout (both via Pyramid),

• Content types,

• portlets (see kotti.views.slots),

• access control and the user database (see Security),

• workflows (via repoze.workflow),

• and much more.

Kotti has a down-to-earth API. Developers working with Kotti will most of the time make direct use of the Pyramid
and SQLAlchemy libraries. Other notable components used but not enforced by Kotti are Colander and Deform for
forms, and Chameleon for templating.

Continuous testing against different versions of Python and with PostgreSQL, MySQL and SQLite and a complete test
coverage make Kotti a stable platform to work with.

5

http://docs.pylonsproject.org/projects/pyramid/dev/
http://docs.repoze.org/workflow/
http://docs.pylonsproject.org/projects/pyramid/dev/
http://www.sqlalchemy.org/
http://docs.pylonsproject.org/projects/colander/en/latest/
http://docs.pylonsproject.org/projects/deform/en/latest/
http://chameleon.repoze.org/
http://travis-ci.org/Pylons/Kotti
http://travis-ci.org/Pylons/Kotti

Kotti Documentation, Release 0.6

6 Chapter 2. For Developers

CHAPTER

THREE

INSTALLATION

You can download Kotti from the Python Package Index, it takes only a few moments to install.

3.1 Installation

3.1.1 Requirements

• Runs on Python versions 2.6 and 2.7.

• Support for PostgreSQL, MySQL and SQLite (tested regularly), and a list of other SQL databases

• Support for WSGI and a variety of web servers, including Apache

3.1.2 Installation using virtualenv

It’s recommended to install Kotti inside a virtualenv:

virtualenv mysite --no-site-packages
cd mysite
bin/pip install Kotti==0.7.2 -r https://raw.github.com/Pylons/Kotti/0.7.2/requirements.txt

Kotti uses Paste Deploy for configuration and deployment. An example configuration file is included with Kotti’s
source distribution. Download it:

wget https://github.com/Pylons/Kotti/raw/master/app.ini

Finally, to run Kotti:

bin/pserve app.ini

7

http://pypi.python.org/pypi/Kotti
http://www.sqlalchemy.org/docs/core/engines.html#supported-databases
http://wsgi.org/wsgi/Servers
http://pypi.python.org/pypi/virtualenv
http://pythonpaste.org/deploy/#the-config-file

Kotti Documentation, Release 0.6

8 Chapter 3. Installation

CHAPTER

FOUR

CONFIGURATION

4.1 Configuration

Contents

• Configuration
– INI File
– Overview of settings
– kotti.secret and kotti.secret2
– Adjust the look & feel (kotti.asset_overrides)
– Use add-ons

* pyramid.includes
* kotti.available_types
* kotti.populators
* kotti.search_content

– Configure the user interface language
– Configure authentication and authorization
– Sessions
– Caching
– Local navigation

4.1.1 INI File

Kotti is configured using an INI configuration file. The Installation section explains how to get hold of a sample
configuration file. The [app:kotti] section in it might look like this:

[app:kotti]
use = egg:Kotti
pyramid.reload_templates = true
pyramid.debug_authorization = false
pyramid.debug_notfound = false
pyramid.debug_routematch = false
pyramid.debug_templates = true
pyramid.default_locale_name = en
pyramid.includes = pyramid_debugtoolbar

pyramid_tm
mail.default_sender = yourname@yourhost
sqlalchemy.url = sqlite:///%(here)s/Kotti.db

9

Kotti Documentation, Release 0.6

kotti.site_title = Kotti
kotti.secret = changethis1

Various aspects of your site can be changed right here.

4.1.2 Overview of settings

This table provides an overview of available settings. All these settings must go into the [app:kotti] section of
your Paste Deploy configuration file.

Only the settings in bold letters required. The rest has defaults.

Do take a look at the required settings (in bold) and adjust them in your site’s configuration. A few of the settings are
less important, and sometimes only used by developers, not integrators.

4.1.3 kotti.secret and kotti.secret2

The value of kotti.secret will define the initial password of the admin user. Thus, if you define
kotti.secret = mysecret, the admin password will be mysecret. Log in and change the password at
any time through the web interface.

The kotti.secret token is also used for signing browser session cookies. The kotti.secret2 token is used
for signing the password reset token.

Here’s an example:

kotti.secret = myadminspassword
kotti.secret2 = $2a$12$VVpW/i1MA2wUUIUHwY6v8O

Note: Do not use these values in your site

4.1.4 Adjust the look & feel (kotti.asset_overrides)

In your settings file, set kotti.asset_overrides to a list of asset specifications. This allows you to set up a
directory in your package that will mirror Kotti’s own and that allows you to override Kotti’s templates, CSS files and
images on a case by case basis.

As an example, image that we wanted to override Kotti’s master layout template. Inside the Kotti source, the layout
template is at kotti/templates/view/master.pt. To override this, we would add a directory to our own
package called kotti-overrides and therein put our own version of the template so that the full path to our own
custom template is mypackage/kotti-overrides/templates/view/master.pt.

We can then register our kotti-overrides directory by use of the kotti.asset_overrides setting, like so:

kotti.asset_overrides = mypackage:kotti-overrides/

4.1.5 Use add-ons

Add-ons will usually include in their installation instructions which settings one should modify to activate them.
Configuration settings that are used to activate add-ons are:

• pyramid.includes

• kotti.available_types

10 Chapter 4. Configuration

Kotti Documentation, Release 0.6

• kotti.base_includes

• kotti.configurators

pyramid.includes

pyramid.includes defines a list of hooks that will be called when your Kotti app starts up. This gives the
opportunity to third party packages to add registrations to the Pyramid Configurator API in order to configure views
and more.

Here’s an example. Let’s install the kotti_twitter extension and add a Twitter profile widget to the right column of all
pages. First we install the package from PyPI:

bin/pip install kotti_twitter

Then we activate the add-on in our site by editing the pyramid.includes setting in the [app:kotti] section
of our INI file. (If a line with pyramid.includes does not exist, add it.)

pyramid.includes = kotti_twitter.include_profile_widget

kotti_twitter also asks us to configure the Twitter widget itself, so we add some more lines right where we were:

kotti_twitter.profile_widget.user = dnouri
kotti_twitter.profile_widget.loop = true

The order in which the includes are listed matters. For example, when you add two slots on the right hand side,
the order in which you list them in pyramid.includes will control the order in which they will appear. As an
example, here’s a configuration with which the search widget will be displayed above the profile widget:

pyramid.includes =
kotti_twitter.include_search_widget
kotti_twitter.include_profile_widget

Read more about including packages using ‘pyramid.includes’ in the Pyramid documentation.

kotti.available_types

The kotti.available_types setting defines the list of content types available. The default configuration here
is:

kotti.available_types = kotti.resources.Document kotti.resources.File

An example that removes File and adds two content types:

kotti.available_types =
kotti.resources.Document
kotti_calendar.resources.Calendar
kotti_calendar.resources.Event

kotti.populators

The default configuration here is:

kotti.populators = kotti.populate.populate

Populators are functions with no arguments that get called on system startup. They may then make automatic changes
to the database (before calling transaction.commit()).

4.1. Configuration 11

http://pypi.python.org/pypi/kotti_twitter
http://readthedocs.org/docs/pyramid/en/1.3-branch/narr/environment.html#including-packages

Kotti Documentation, Release 0.6

kotti.search_content

Kotti provides a simple search over the content types based on kotti.resources.Content. The default configuration here
is:

kotti.search_function = kotti.views.util.default_search_content

You can provide an own search function in an add-on and register this in your INI file. The return value of the search
function is a list of dictionaries, each representing a search result:

[{’title’: ’Title of search result 1’,
’description’: ’Description of search result 1’,
’path’: ’/path/to/search-result-1’},

{’title’: ’Title of search result 2’,
’description’: ’Description of search result 2’,
’path’: ’/path/to/search-result-2’},

...
]

An add-on that defines an alternative search function is kotti_solr, which provides an integration with the Solr search
engine.

4.1.6 Configure the user interface language

By default, Kotti will display its user interface in English. The default configuration is:

pyramid.default_locale_name = en

You can configure Kotti to serve a German user interface by saying:

pyramid.default_locale_name = de_DE

The list of available languages is here.

4.1.7 Configure authentication and authorization

You can override the authentication and authorization policy that Kotti uses. By default, Kotti uses these factories:

kotti.authn_policy_factory = kotti.authtkt_factory
kotti.authz_policy_factory = kotti.acl_factory

These settings correspond to pyramid.authentication.AuthTktAuthenticationPolicy and pyra-
mid.authorization.ACLAuthorizationPolicy being used.

4.1.8 Sessions

The kotti.session_factory configuration variable allows the overriding of the default session factory. By
default, Kotti uses pyramid_beaker for sessions.

4.1.9 Caching

You can override Kotti’s default set of cache headers by changing the
kotti.views.cache.caching_policies dictionary, which maps policies to headers. E.g. the

12 Chapter 4. Configuration

http://pypi.python.org/pypi/kotti_solr
http://lucene.apache.org/solr/
https://github.com/Pylons/Kotti/tree/master/kotti/locale
http://docs.pylonsproject.org/projects/pyramid/dev/api/authentication.html
http://docs.pylonsproject.org/projects/pyramid/dev/api/authorization.html
http://docs.pylonsproject.org/projects/pyramid/dev/api/authorization.html

Kotti Documentation, Release 0.6

Cache Resource entry there caches all static resources for 32 days. You can also choose which re-
sponses match to which caching policy by overriding Kotti’s default cache policy chooser through the use of
the kotti.caching_policy_chooser configuration variable. The default is:

kotti.caching_policy_chooser = kotti.views.cache.default_caching_policy_chooser

4.1.10 Local navigation

Kotti provides a build in navigation widget, which is disabled by default. To enable the navigation widget add the
following to the pyramid.includes setting:

pyramid.includes = kotti.views.slots.includeme_local_navigation

The add-on kotti_navigation provides also a navigation widget with more features. With this add-on included your
configuration looks like:

pyramid.includes = kotti_navigation.include_navigation_widget

Check the documentation of kotti_navigation for more options.

4.1. Configuration 13

http://pypi.python.org/pypi/kotti_navigation
http://pypi.python.org/pypi/kotti_navigation

Kotti Documentation, Release 0.6

14 Chapter 4. Configuration

CHAPTER

FIVE

DEVELOPER MANUAL

5.1 Developer manual

Read the Configuration section first to understand which hooks both integrators and developers can use to customize
and extend Kotti.

Contents

• Developer manual
– Fork and Repo Setup
– Screencast tutorial
– Content types
– Add views, subscribers and more
– Working with content objects
– kotti.views.slots
– kotti.events
– kotti.configurators
– Security
– API

5.1.1 Fork and Repo Setup

To contribute to Kotti, and to test and run against Master, fork pylons/Kotti to your github account, and follow the
usual steps to get a local clone, with origin as your fork, and with upstream as the pylons/Kotti repo. Then, you will
be able to make branches for contributing, etc. Steps would be something like this:

git clone https://github.com/your_github/Kotti.git

cd Kotti

git remote add upstream git://github.com/Pylons/Kotti.git

Now you should be set up to make branches for this and that, doing a pull request from a branch, and the usual git
procedures. You may wish to read the Github fork-a-repo help.

To run and develop within your clone, do these steps:

virtualenv . --no-site-packages

bin/python setup.py develop

15

https://help.github.com/articles/fork-a-repo

Kotti Documentation, Release 0.6

This will create a new virtualenv “in place” and do the python develop steps to use the Kotti code in the repo.

Run bin/pip install kotti_someaddon, and add a kotti_someaddon entry to app.ini, as you would do normally, to use
add-ons.

5.1.2 Screencast tutorial

Here’s a screencast that guides you through the process of creating a simple Kotti add-on for visitor comments:

5.1.3 Content types

Defining your own content types is easy. The implementation of the Document content type serves as an example
here:

from kotti.resources import Content

class Document(Content):
id = Column(Integer(), ForeignKey(’contents.id’), primary_key=True)
body = Column(UnicodeText())
mime_type = Column(String(30))

type_info = Content.type_info.copy(
name=u’Document’,
title=_(u’Document’),
add_view=u’add_document’,
addable_to=[u’Document’],
)

def __init__(self, body=u"", mime_type=’text/html’, **kwargs):
super(Document, self).__init__(**kwargs)
self.body = body
self.mime_type = mime_type

You can configure the list of active content types in Kotti by modifying the kotti.available_types setting.

Note that when adding a relationship from your content type to another Node, you will need to add a primaryjoin
parameter to your relationship. An example:

from sqlalchemy.orm import relationship

class DocumentWithRelation(Document):
id = Column(Integer, ForeignKey(’documents.id’), primary_key=True)
related_item_id = Column(Integer, ForeignKey(’nodes.id’))
related_item = relationship(

’Node’, primaryjoin=’Node.id==DocumentWithRelation.related_item_id’)

5.1.4 Add views, subscribers and more

pyramid.includes allows you to hook includeme functions that you can use to add views, subscribers, and more
aspects of Kotti. An includeme function takes the Pyramid Configurator API object as its sole argument.

Here’s an example that’ll override the default view for Files:

def my_file_view(request):
return {...}

16 Chapter 5. Developer manual

Kotti Documentation, Release 0.6

def includeme(config):
config.add_view(

my_file_view,
name=’view’,
permission=’view’,
context=File,
)

To find out more about views and view registrations, please refer to the Pyramid documentation.

By adding the dotted name string of your includeme function to the pyramid.includes setting, you ask Kotti to call
it on application start-up. An example:

pyramid.includes = mypackage.views.includeme

5.1.5 Working with content objects

Every content node in the database (be it a document, a file...) is also a container for other nodes. You can access,
add and delete child nodes of a node through a dict-like interface. A node’s parent may be accessed through the
node.__parent__ property.

kotti.resources.get_root gives us the root node:

>>> from kotti.resources import get_root
>>> root = get_root()
>>> root.__parent__ is None
True
>>> root.title = u’A new title’

Let us add three documents to our root:

>>> from kotti.resources import Document
>>> root[’first’] = Document(title=u’First page’)
>>> root[’second’] = Document(title=u’Second page’)
>>> root[’third’] = Document(title=u’Third page’)

Note how the keys in the dict correspond to the name of child nodes:

>>> first = root[’first’]
>>> first.name
u’first’
>>> first.__parent__ == root
True
>>> third = root[’third’]

We can make a copy of a node by using the node.copy() method. We can delete child nodes from the database
using the del operator:

>>> first[’copy-of-second’] = root[’second’].copy()
>>> del root[’second’]

The lists of keys and values are ordered:

>>> root.keys()
[u’first’, u’third’]
>>> first.keys()
[u’copy-of-second’]
>>> root.values()
[<Document ... at /first>, <Document ... at /third>]

5.1. Developer manual 17

http://docs.pylonsproject.org/projects/pyramid/en/latest/

Kotti Documentation, Release 0.6

There’s the node.children attribute should you ever need to change the order of the child nodes.
node.children is a SQLAlchmey ordered_list which keeps track of the order of child nodes for us:

>>> root.children
[<Document ... at /first>, <Document ... at /third>]
>>> root.children[:] = [root.values()[-1], root.values()[0]]
>>> root.values()
[<Document ... at /third>, <Document ... at /first>]

Note: Removing an element from the nodes.children list will not delete the child node from the database. Use
del node[child_name] as above for that.

You can move a node by setting its __parent__:

>>> third.__parent__
<Document ... at />
>>> third.__parent__ = first
>>> root.keys()
[u’first’]
>>> first.keys()
[u’copy-of-second’, u’third’]

5.1.6 kotti.views.slots

This module allows add-ons to assign views to slots defined in the overall page. In other systems, these are called
portlets or viewlets.

A simple example that’ll include the output of the ‘hello_world’ view in in the left column of every page:

from kotti.views.slots import assign_slot
assign_slot(’hello_world’, ’left_slot’)

It is also possible to pass parameters to the view:

assign_slot(‘last_tweets’, ‘right_slot’, params=dict(user=’foo’))

If no view can be found for the given request and slot, the slot remains empty.

Usually you’ll want to call kotti.views.slots.assign_slot() inside an includeme function and not on
a module level, to allow users of your package to include your slot assignments through the pyramid.includes
configuration setting.

5.1.7 kotti.events

This module includes a simple events system that allows users to subscribe to specific events, and more particularly to
object events of specific object types.

To subscribe to any event, write:

def all_events_handler(event):
print event

kotti.events.listeners[object].append(all_events_handler)

To subscribe only to ObjectInsert events of Document types, write:

18 Chapter 5. Developer manual

Kotti Documentation, Release 0.6

def document_insert_handler(event):
print event.object, event.request

kotti.events.objectevent_listeners[(ObjectInsert, Document)].append(
document_insert_handler)

Events of type ObjectEvent have object and request attributes. event.request may be None when no
request is available.

Notifying listeners of an event is as simple as calling the listeners_notify function:

from kotti events import listeners
listeners.notify(MyFunnyEvent())

Listeners are generally called in the order in which they are registered.

5.1.8 kotti.configurators

Requiring users of your package to set all the configuration settings by hand in the Paste Deploy INI file is not ideal.
That’s why Kotti includes a configuration variable through which extending packages can set all other INI settings
through Python. Here’s an example of a function that programmatically modified kotti.base_includes and
kotti_principals which would otherwise be configured by hand in the INI file:

in mypackage/__init__.py
def kotti_configure(config):

config[’kotti.base_includes’] += ’ mypackage.views’
config[’kotti.principals’] = ’mypackage.security.principals’

And this is how your users would hook it up in their INI file:

kotti.configurators = mypackage.kotti_configure

5.1.9 Security

Kotti uses Pyramid’s security API, most notably its support inherited access control lists support. On top of that, Kotti
defines roles and groups support: Users may be collected in groups, and groups may be given roles, which in turn
define permissions.

The site root’s ACL defines the default mapping of roles to their permissions:

root.__acl__ == [
[’Allow’, ’system.Everyone’, [’view’]],
[’Allow’, ’role:viewer’, [’view’]],
[’Allow’, ’role:editor’, [’view’, ’add’, ’edit’]],
[’Allow’, ’role:owner’, [’view’, ’add’, ’edit’, ’manage’]],
]

Every Node object has an __acl__ attribute, allowing the definition of localized row-level security.

The kotti.security.set_groups() function allows assigning roles and groups to users in a given context.
kotti.security.list_groups() allows one to list the groups of a given user. You may also set the list of
groups globally on principal objects, which are of type kotti.security.Principal.

Kotti delegates adding, deleting and search of user objects to an interface it calls
kotti.security.AbstractPrincipals. You can configure Kotti to use a different Principals
implementation by pointing the kotti.principals_factory configuration setting to a different factory. The
default setting here is:

5.1. Developer manual 19

http://docs.pylonsproject.org/projects/pyramid/dev/api/security.html
http://docs.pylonsproject.org/projects/pyramid/en/latest/narr/security.html#acl-inheritance-and-location-awareness

Kotti Documentation, Release 0.6

kotti.principals_factory = kotti.security.principals_factory

5.1.10 API

API Documentation

kotti.security

kotti.security.set_groups(name, context, groups_to_set=())
Set the list of groups for principal with given name and in given context.

kotti.security.list_groups(name, context=None)
List groups for principal with a given name.

The optional context argument may be passed to check the list of groups in a given context.

class kotti.security.AbstractPrincipals
This class serves as documentation and defines what methods are expected from a Principals database.

Principals mostly provides dict-like access to the principal objects in the database. In addition, there’s the
‘search’ method which allows searching users and groups.

‘hash_password’ is for initial hashing of a clear text password, while ‘validate_password’ is used by the login
to see if the entered password matches the hashed password that’s already in the database.

Use the ‘kotti.principals’ settings variable to override Kotti’s default Principals implementation with your own.

hash_password(password)
Return a hash of the given password.

This is what’s stored in the database as ‘principal.password’.

keys()
Return a list of principal ids that are in the database.

search(**kwargs)
Return an iterable with principal objects that correspond to the search arguments passed in.

This example would return all principals with the id ‘bob’:

get_principals().search(name=u’bob’)

Here, we ask for all principals that have ‘bob’ in either their ‘name’ or their ‘title’. We pass ‘bob‘ instead
of ‘bob’ to indicate that we want case-insensitive substring matching:

get_principals().search(name=u’bob‘, title=u’bob‘)

This call should fail with AttributeError unless there’s a ‘foo’ attribute on principal objects that supports
search:

get_principals().search(name=u’bob’, foo=u’bar’)

validate_password(clear, hashed)
Returns True if the clear text password matches the hash.

class kotti.security.Principal(name, password=None, active=True, confirm_token=None, ti-
tle=u’‘, email=None, groups=())

A minimal ‘Principal’ implementation.

The attributes on this object correspond to what one ought to implement to get full support by the system. You’re
free to add additional attributes.

20 Chapter 5. Developer manual

Kotti Documentation, Release 0.6

•As convenience, when passing ‘password’ in the initializer, it is hashed using
‘get_principals().hash_password’

•The boolean ‘active’ attribute defines whether a principal may log in. This allows the deactivation of
accounts without deleting them.

•The ‘confirm_token’ attribute is set whenever a user has forgotten their password. This token is used to
identify the receiver of the email. This attribute should be set to ‘None’ once confirmation has succeeded.

Indices and tables

• genindex

• modindex

• search

5.1. Developer manual 21

Kotti Documentation, Release 0.6

22 Chapter 5. Developer manual

CHAPTER

SIX

COOKBOOK

6.1 Close your site for anonymous users

This recipe describes how to configure Kotti to require users to log in before they can view any of your site’s pages.

To achieve this, we’ll have to set our site’s ACL. A custom populator will help us do that (see kotti.populators).

Remember that the default site ACL gives view privileges to every user, including anonymous (see Security). We’ll
thus have to restrict the view permission to the viewer role:

from kotti.resources import get_root

SITE_ACL = [
(u’Allow’, u’role:viewer’, [u’view’]),
(u’Allow’, u’role:editor’, [u’view’, u’add’, u’edit’]),

]

def populate():
site = get_root()
site.__acl__ = SITE_ACL

6.2 Use a different template for the front page (or any other page)

This recipe describes a way to override the template used for a specific object in your database. Imagine you want
your front page to stand out from the rest of your site and use a unique layout.

We can set the default view for any content object by settings its default_view attribute, which is usually None.
Inside our own populator (see kotti.populators), we write this:

from kotti.resources import get_root

def populate():
site = get_root()
site.default_view = ’front-page’

What’s left is to register the front-page view:

def includeme(config):
config.add_view(

name=’front-page’,
renderer=’myapp:templates/front-page.pt’,

)

23

Kotti Documentation, Release 0.6

Note: If you want to override instead the template of all pages, not only that of a particluar page, you should look at
the kotti.override_assets setting (Adjust the look & feel (kotti.asset_overrides)).

6.3 Image URLs

Kotti provides on-the-fly image scaling by utilizing ‘plone.scale‘_.

Images can be referenced by this URL schema: /path/to/image_content_object/image[/<image_scale>]/download]
where <image_scale> is a predefined image scale (see below).

If the last URL path segment is download, the image will be served with Content-disposition:
attachment otherwise it will be served with Content-disposition: inline.

6.3.1 Predefined image scale sizes

You may define image scale sizes in your .ini file by setting values for
kotti.image_scales.<scale_name> to values of the form <max_width>x<max_height> (e.g.
kotti.image_scales.thumb = 160x120 with the resulting scale name thumb).

span1 (60x120) to span12 (1160x2320) are always defined (with values corresponding to the Twitter Bootstrap
default grid sizes), but their values can be overwritten by setting kotti.image_scales.span<N> to different
values in your .ini file.

6.4 Internationalization

6.4.1 Locale-specific normalization of titles to URLs

Kotti normalizes document titles to URLs by stripping away language specific characters like umlauts or accented
characters. This is often undesirable. If you want a locale-specific normalization of titles, you have to configure the
package plone.i18n which is used by Kotti for the normalization task.

To configure plone.i18n, you have to use ZCML. Fortunately, plone.i18n comes with normalizers for many differ-
ent locales, so you often don’t have to implement one by yourself. You simply have to activate them by loading
plone.i18n‘s main ZCML file.

ZCML configuration is not supported out of the box, you first have to install the pyramid_zcml package. To load
plone.i18n‘s configuration, you also have to install the package zope.browserresource.

Let’s assume that you put all your project’s configurations, overridden templates, static files, and so on in a distinct
package, which generally is good practice. Add both required packages to the dependencies in you setup.py, which
should also include Kotti and extensions you want to use.

You can then load plone.i18n‘s configuration via a ZCML file. For this, create a file configure.zcml (or whatever
name you prefer) like this:

<configure xmlns="http://pylonshq.com/pyramid">
<include package="pyramid_zcml" />
<include package="zope.browserresource" file="meta.zcml" />
<include package="zope.browserresource" />
<include package="plone.i18n" />

</configure>

24 Chapter 6. Cookbook

Kotti Documentation, Release 0.6

To load your configure.zcml on startup, you have to add a startup hook. For example, simply add the following
function to your package’s __init__.py module:

def includeme(config):
config.include(’pyramid_zcml’)
config.load_zcml(’configure.zcml’)

Setup your locale and the hook with the following settings in your INI file:

pyramid.default_locale_name = de_DE
pyramid.includes = mypackage.includeme

6.5 Using Kotti as a library

Instead of taking control of your application, and delegating to your extension, you may use Kotti in applications
where you define the main entry point yourself.

You’ll anyway still need to call kotti.base_configure from your code to set up essential parts of Kotti:

default_settings = {
’pyramid.includes’: ’myapp myapp.views’,
’kotti.authn_policy_factory’: ’myapp.authn_policy_factory’,
’kotti.base_includes’: (

’kotti kotti.views kotti.views.login kotti.views.users’),
’kotti.use_tables’: ’orders principals’,
’kotti.populators’: ’myapp.resources.populate’,
’kotti.principals_factory’: ’myapp.security.Principals’,
’kotti.root_factory’: ’myapp.resources.Root’,
’kotti.site_title’: ’Myapp’,
}

def main(global_config, **settings):
settings2 = default_settings.copy()
settings2.update(settings)
config = kotti.base_configure(global_config, **settings2)
return config.make_wsgi_app()

The above example configures Kotti so that its user database and security subsystem are set up. Only a handful of tables
(kotti.use_tables) and a handful of Kotti’s views (kotti.base_includes) are activated. Furthermore, our
application is configured to use a custom root factory (root node) and a custom populator.

In your PasteDeploy configuration you’d then wire up your app directly, maybe like this:

[app:myapp]
use = egg:myapp
pyramid.includes = pyramid_tm
mail.default_sender = yourname@yourhost
sqlalchemy.url = sqlite:///%(here)s/myapp.db
kotti.secret = secret

[filter:fanstatic]
use = egg:fanstatic#fanstatic

[pipeline:main]
pipeline =

fanstatic
myapp

6.5. Using Kotti as a library 25

Kotti Documentation, Release 0.6

6.6 Static resource management

In the default settings Kotti uses Fanstatic to manage its static resources (i.e. CSS, JS, etc.). This is accomplished by
a WSGI pipeline:

[app:kotti]
use = egg:kotti

[filter:fanstatic]
use = egg:fanstatic#fanstatic

[pipeline:main]
pipeline =

fanstatic
kotti

[server:main]
use = egg:waitress#main
host = 127.0.0.1
port = 5000

6.6.1 Defining resources in third party addons

Defining your own resources and have them rendered in the pages produced by Kotti is also easy. You just need
to define resource objects (as described in the corresponding Fanstatic documentation) and add them to either
edit_needed or view_needed in kotti.static:

from fanstatic import Library
from fanstatic import Resource
from kotti.static import edit_needed
from kotti.static import view_needed

my_library = Library(’my_package’, ’resources’)
my_resource = Resource(my_library, "my.js")

def includeme(config):
add to edit_needed if the resource is needed in edit views
edit_needed.add(my_resource)
add to view_needed if the resource is needed in edit views
view_needed.add(my_resource)

Don’t forget to add an entry_point to your package’s setup.py:

entry_points={
’fanstatic.libraries’: [

’foo = my_package:my_library’,
],

},

Fanstatic has many more useful options, such as being able to define additional minified resources for deployment.
Please consult Fanstatic’s documentation for a complete list of options.

6.6.2 Overriding Kotti’s default definitions

You can ovveride the resources to be included in the configuration file.

26 Chapter 6. Cookbook

http://www.fanstatic.org/
http://fanstatic.readthedocs.org/en/latest/library.html
http://fanstatic.readthedocs.org/

Kotti Documentation, Release 0.6

The defaults are

[app:kotti]

kotti.static.edit_needed = kotti.static.edit_needed
kotti.static.view_needed = kotti.static.view_needed

which ist actually a shortcut for

[app:kotti]

kotti.static.edit_needed =
kotti.static.edit_needed_js
kotti.static.edit_needed_css

kotti.static.view_needed =
kotti.static.view_needed_js
kotti.static.view_needed_css

You may add as many kotti.static.NeededGroup, fanstatic.Group or fanstatic.Resource (or
actually anything that provides a .need() method) objects in dotted notation as you want.

Say you want to completely abandon Kotti’s CSS resources (and use your own for both view and edit views) but use
Kotti’s JS resources plus an additional JS resource defined within your app (only in edit views). Your configuration
file might look like this:

[app:kotti]

kotti.static.edit_needed =
kotti.static.edit_needed_js
myapp.static.js_resource
myapp.static.css_resource

kotti.static.view_needed =
kotti.static.view_needed_js
myapp.static.css_resource

6.6.3 Using Kotti without Fanstatic

To handle resources yourself, you can easily and completely turn off fanstatic:

[app:main]
use = egg:kotti

[server:main]
use = egg:waitress#main
host = 127.0.0.1
port = 5000

6.6. Static resource management 27

Kotti Documentation, Release 0.6

28 Chapter 6. Cookbook

CHAPTER

SEVEN

SUPPORT AND DEVELOPMENT

Please report any bugs that you find to the issue tracker.

If you’ve got questions that aren’t answered by this documentation, contact the Kotti mailing list or join the #kotti IRC
channel.

Kotti itself is developed on Github. You can check out Kotti’s source code via its GitHub repostiory. Use this com-
mand:

git clone git@github.com:Pylons/Kotti

29

https://github.com/Pylons/Kotti/issues
http://groups.google.com/group/kotti
https://github.com/Pylons/Kotti

Kotti Documentation, Release 0.6

30 Chapter 7. Support and Development

CHAPTER

EIGHT

AUTOMATED TESTS

Kotti uses pytest, zope.testbrowser and WebTest for automated testing.

Before you can run the tests, you must install Kotti’s ‘testing’ extras. Inside your Kotti checkout directory, do:

bin/python setup.py dev

To then run Kotti’s test suite, do:

bin/py.test

31

http://pytest.org
http://pypi.python.org/pypi/zope.testbrowser
http://webtest.pythonpaste.org

Kotti Documentation, Release 0.6

32 Chapter 8. Automated tests

CHAPTER

NINE

TRANSLATIONS

You can find the list of Kotti’s translations here. Kotti uses GNU gettext and .po files for internationalization.

You can set the pyramid.default_locale_name in your configuration file to choose which language Kotti
should serve the user interface (see Configure the user interface language).

In order to compile your .po files to .mo files, do:

bin/python setup.py compile_catalog

To extract messages and update the existing .pot and .po files, do:

bin/python setup.py extract_messages update_catalog

See also Internationalization from the Cookbook.

33

https://github.com/Pylons/Kotti/tree/master/kotti/locale
http://www.gnu.org/software/gettext/

Kotti Documentation, Release 0.6

34 Chapter 9. Translations

CHAPTER

TEN

DETAILED CHANGE HISTORY

10.1 Change History

10.1.1 0.7.2 - 2012-10-02

• Improve installation instructions. Now uses tagged requirements.txt file.

• Added event request POST vars to the request for the slot viewlet.

• Added IFile and IImage interfaces to allow for file and image subclasses to reuse the same view (registrations).

10.1.2 0.7.1 - 2012-08-30

• Add deletion of users to the users management.

• Fix tag support for files and images.

• Upgrade to Twitter Bootstrap 2.1

– remove lots of CSS that is no longer needed

– fix responsive layout that was broken on some phone size screen resolutions

• Add “Site Setup” submenu / remove @@setup view.

10.1.3 0.7 - 2012-08-16

• Fix critical issue with migrations where version number would not be persisted in the Alembic versions table.

10.1.4 0.7rc1 - 2012-08-14

• No changes.

10.1.5 0.7a6 - 2012-08-07

• Fix a bug with connections in the migration script. This would previously cause Postgres to deadlock when
calling kotti-migrate.

35

Kotti Documentation, Release 0.6

10.1.6 0.7a5 - 2012-08-07

• Add workflow support based on repoze.workflow. A simple workflow is included in workflow.zcml
and is active by default. Use kotti.use_workflow = 0 to deactivate. The workflow support adds a
drop-down that allows users with state_change permission to modify the workflow state.

• Change the default layout

Kotti’s new default look is now even closer to the Bootstrap documentation, with the main nav bar at the very
top and the edit bar right below.

Upgrade note: if you have a customized main_template and want to use the recent changes in that template, you
need to swap positions of nav.pt and editor-bar.pt api.render_template calls and remove the
search.pt call from the main_template (it’s now called from within nav.pt). Everything else is completely
optional.

• Add migrations via Alembic. A new script kotti-migrate helps with managing database upgrades of Kotti
and Kotti add-ons. Run kotti-migrate <your.ini> upgrade to upgrade the Kotti database to the
latest version.

Add-on authors should see the kotti.migrate module’s docstring for more details.

• Make Document.body searchable (and therefore the search feature actually useful for the first time).

• Add a “minify” command to compress CSS and JS resources.

To use it run:

python setup.py dev
python setup.py minify

The minify command assumes, that all resources are in kotti/static/. YUI compressor is used for
compression and will be automatically installed when running python setup.py dev. However, you still
need a JVM on your development machine to be able to use the minify command.

• Fix settings: only values for kotti* keys should be converted to unicode strings.

• Fix #89: Validate email address for uniqueness when user changes it.

• Fix #91: Styling of search box.

• Fix #104: Make fanstatic resources completely overridable.

• Enabled deferred loading on File.data column.

Migrations

• Upgrading from 0.6 to 0.7 requires you to run a migration script on your database. To run the migration, call:

$ bin/kotti-migrate <myconfig.ini> upgrade

Make sure you backup your database before running the migration!

• Upgrading to 0.7 will initialize workfow state and permissions for all your content objects, unless you’ve over-
written kotti-use_workflow to not use a workflow (use 0) or a custom one.

It is important that sites that have custom permissions, e.g. custom modifications to SITE_ACL, turn off
workflow support prior to running the upgrade script.

36 Chapter 10. Detailed Change History

Kotti Documentation, Release 0.6

10.1.7 0.7a4 - 2012-06-25

• Add minified versions JS/CSS files.

• Fix #88: logging in with email.

• Update translations.

10.1.8 0.7a3 - 2012-06-15

• Include kotti.tinymce which adds plug-ins for image and file upload and content linking to the TinyMCE
rich text editor.

• Slot renderers have been replaced by normal views (or viewlets). kotti.views.slots.register has
been deprecated in favour of kotti.views.slots.assign_slot, which works similarly, but takes a
view name of a registered view instead of a function for registration.

• Switch to fanstatic for static resource management.

Upgrade note: This requires changes to existing *.ini application configuration files. Concretely, you’ll need
to add a filter:fanstatic section and a pipeline:main section and rename an existing app:main
section to app:Kotti or the like. Take a look at Kotti’s own development.ini for an example.

• Retire the undocumented kotti.resources.Setting class and table. kotti.get_settings will
now return registry.settings straight, without looking for persistent overrides in the database.

• Drop support for Pyramid<1.3, since we use pyramid.response.FileResponse, and kotti_tinymce
uses pyramid.view.view_defaults.

• Fix encoding error with non-ascii passwords.

10.1.9 0.7a2 - 2012-06-07

• Do not allow inactive users to reset their password.

10.1.10 0.7a1 - 2012-06-01

Features

• Add a new ‘Image’ content type and image scaling, originally from the kotti_image_gallery add-on. See
kotti.image_scales.* settings.

• Add search and related setting kotti.search_content.

• Add subscriber to set cache headers based on caching rules. See also related setting
kotti.caching_policy_chooser.

• Remove TinyMCE from the core.

• Move email templates into page templates in kotti:templates/email-set-password.pt and
kotti:templates/email-reset-password.pt. This is to make them easier to translate and cus-
tomize. This deprecates kotti.message.send_set_password.

• Add a ‘edit_inhead’ slot for stuff that goes into the edit interface’s head. ‘inhead’ is no longer be used in
‘edit/master.pt’.

• For more details, see also http://danielnouri.org/notes/2012/05/28/kotti-werkpalast-sprint-wrap-up/

10.1. Change History 37

http://danielnouri.org/notes/2012/05/28/kotti-werkpalast-sprint-wrap-up/

Kotti Documentation, Release 0.6

Bugs

• Fix bug with group edit views. See https://github.com/Pylons/Kotti/pull/61

• Fix bug where user.last_login_date was not set during automic login after the set password screen.

10.1.11 0.6.3 - 2012-05-08

• Add tag support. All content objects now have tags. They can be added in the UI using the “jQuery UI Tag-it!”
widget. See https://github.com/Pylons/Kotti/pull/55 .

• Fix a bug with file download performance.

10.1.12 0.6.2 - 2012-04-21

• Links in Navigation view lead to node view. Added edit links to view the node’s edit form.

• Hitting ‘Cancel’ now returns to the context node for add/edit views

10.1.13 0.6.1 - 2012-03-30

• Added button to show/hide nodes from navigation in the order screen.

• The ‘rename’ action now strips slashes out of names. Fixes #53.

• Add Dutch translation.

• Allow translation of TinyMCE’s UI (starting with deform 0.9.5)

• Separated out testing dependencies. Run bin/python setup.py dev to install Kotti with extra depen-
dencies for testing.

• Deprecate ‘kotti.includes’ setting. Use the standard ‘pyramid.includes’ instead.

• Setting ‘Node.__acl__’ to the empty list will now persist the empty list instead of setting ‘None’.

• Let ‘pyramid_deform’ take care of configuring deform with translation dirs and search paths.

10.1.14 0.6.0 - 2012-03-22

• Add Japanese translation.

• Enforce lowercase user names and email with registration and login.

• Moved SQLAlchemy related stuff from kotti.util into kotti.sqla.

• You can also append to ‘Node.__acl__’ now in addition to setting the attribute.

10.1.15 0.6.0b3 - 2012-03-17

• Have the automatic __tablename__ and polymorphic_identity for CamelCase class names use
underscores, so a class ‘MyFancyDocument’ gets a table name of ‘my_fancy_documents’ and a type of
‘my_fancy_document’.

38 Chapter 10. Detailed Change History

https://github.com/Pylons/Kotti/pull/61
https://github.com/Pylons/Kotti/pull/55

Kotti Documentation, Release 0.6

10.1.16 0.6.0b2 - 2012-03-16

• Make the ‘item_type’ attribute of AddForm optional. Fixes #41.

• kotti.util.title_to_name will now return a name with a maximum length of 40. Fixes #31.

10.1.17 0.6.0b1 - 2012-03-15

• Use declarative style instead of class mapper for SQLAlchemy resources.

Unfortunately, this change is backwards incompatible with existing content types (not with existing databases
however). Updating your types to use Declarative is simple. See kotti_calendar for an example:
https://github.com/dnouri/kotti_calendar/commit/509d46bd596ff338e0a88f481339882de72e49e0#diff-1

10.1.18 0.5.2 - 2012-03-10

• A new ‘Actions’ menu makes copy, paste, delete and rename of items more accessible.

• Add German translation.

• Populators no longer need to call transaction.commit() themselves.

10.1.19 0.5.1 - 2012-02-27

• Internationalize user interface. Add Portuguese as the first translation.

• A new ‘Add’ menu in the editor toolbar allows for a more intuitive adding of items in the CMS.

• Refine Node.copy. No longer copy over local roles per default.

10.1.20 0.5.0 - 2012-02-15

• Move Kotti’s default user interface to use Twitter Bootstrap 2.

• Add a new ‘File’ content type.

• Add CSRF protection to some forms.

• Remove Kotti’s FormController in favor of using pyramid_deform.

• Use plone.i18n to normalize titles to URL parts.

• Add a separate navigation screen that replaces the former intelligent breadcrumbs menu.

• Use pyramid_beaker as the default session factory.

• Make kotti.messages.send_set_password a bit more flexible.

10.1.21 0.4.5 - 2012-01-19

• Add ‘kotti.security.has_permission’ which may be used instead of ‘pyramid.security.has_permission’.

The difference is that Kotti’s version will set the “authorization context” to be the context that you pass to
‘has_permission’. The effect is that ‘list_groups’ will return a more correct list of local roles, i.e. the groups in
the given context instead of ‘request.context’.

• Add a template (‘forbidden.pt’) for when user is logged in but still getting HTTPForbidden.

10.1. Change History 39

https://github.com/dnouri/kotti_calendar/commit/509d46bd596ff338e0a88f481339882de72e49e0#diff-1

Kotti Documentation, Release 0.6

10.1.22 0.4.4 - 2012-01-05

• The “Forbidden View” will no longer redirect clients that don’t accept ‘text/html’ to the login form.

• Fix bug with ‘kotti.site_title’ setting.

10.1.23 0.4.3 - 2011-12-22

• Add ‘kotti.root_factory’ setting which allows the override Kotti’s default Pyramid root factory. Also, make
master templates more robust so that a minimal root with ‘__parent__’ and ‘__name__’ can be rendered.

• The ‘kotti.tests’ was factored out. Tests should now import from ‘kotti.testing’.

10.1.24 0.4.2 - 2011-12-20

• More convenient overrides for add-on packages by better use of ‘config.commit()’.

10.1.25 0.4.1 - 2011-12-20

• Modularize Kotti’s Paste App Factory ‘kotti.main’.

• Allow explicit setting of tables that Kotti creates (‘kotti.use_tables’).

10.1.26 0.4.0 - 2011-12-14

• Remove configuration variables ‘kotti.templates.*’ in favour of ‘kotti.asset_overrides’, which uses Pyramid asset
specs and their overrides.

• Remove ‘TemplateAPI.__getitem__’ and instead add ‘TemplateAPI.macro’ which has a similar but less ‘special’
API.

• Factor snippets in ‘kotti/templates/snippets.pt’ out into their own templates. Use ‘api.render_template’ to render
them instead of macros.

10.1.27 0.3.1 - 2011-12-09

• Add ‘keys’ method to mutation dicts (see 0.3.0).

10.1.28 0.3.0 - 2011-11-30

• Replace Node.__annotations__ in favor of an extended Node.annotations.

Node.annotations will attempt to not only recognize changes to subobjects of type dict, it will also handle
list objects transparently. That is, changing arbitrary JSON structures should just work with regard to calling
node.annotations.changed() when the structure was changed.

10.1.29 0.2.10 - 2011-11-22

• ‘api.format_datetime’ now also accepts a timestamp in addition to datetime.

40 Chapter 10. Detailed Change History

Kotti Documentation, Release 0.6

10.1.30 0.2.9 - 2011-11-21

• Remove MANIFEST.in in favour of using ‘setuptools-git’.

10.1.31 0.2.8 - 2011-11-21

• Remove ‘PasteScript’ dependency since that would result in spurious errors when installing Kotti. See
http://jenkins.danielnouri.org/job/Kotti/42/TOXENV=py27/console

10.1.32 0.2.7 - 2011-11-20

• Add ‘PasteScript’ dependency.

• Fix #11 where ‘python setup.py test’ would look into a hard-coded ‘bin’ directory.

• Structural analysis documentation. (Unfinished; in ‘analysis’ directory during development. Will be moved to
main docs when finished.)

10.1.33 0.2.6 - 2011-11-17

• Add Node.__annotations__ convenience attribute.

Node.__annotations__ will wrap the annotations dict in such a way that both item and attribute access are
possible. It’ll also record changes to dicts inside dicts and mark the parent __annotations__ attribute as dirty.

• Add a welcome page.

• Delete the demo added in version 0.2.4.

10.1.34 0.2.5 - 2011-11-14

• Add ‘TemplateAPI.render_template’; allow templates to be rendered conveniently from templates.

10.1.35 0.2.4 - 2011-11-13

• Adjust for Pyramid 1.2: INI file, pyramid_tm, Wsgiref server, pcreate and pserve. (MO)

• Add Kotti Demo source and documentation.

10.1.36 0.2.3 - 2011-10-28

• Node.__getitem__ will now also accept a tuple as key.

folder[’1’, ’2’] is the same as folder[’1’][’2’], just more efficient.

• Added a new cache decorator based on repoze.lru.

10.1.37 0.2.2 - 2011-10-10

• Change the function signature of kotti.authn_policy_factory,
kotti.authz_policy_factory and kotti.session_factory to include all settings from
the configuration file.

10.1. Change History 41

http://jenkins.danielnouri.org/job/Kotti/42/TOXENV=py27/console

Kotti Documentation, Release 0.6

10.1.38 0.2.1 - 2011-09-29

• Minor changes to events setup code to ease usage in tests.

10.1.39 0.2 - 2011-09-16

• No changes.

10.1.40 0.2a2 - 2011-09-05

• Fix templates to be compatible with Chameleon 2. Also, require Chameleon>=2.

• Require pyramid>=1.2. Also, enable pyramid_debugtoolbar for development.ini profile.

10.1.41 0.2a1 - 2011-08-29

• Improve database schema for Nodes. Split Node class into Node and Content.

This change is backward incompatible in that existing content types in your code will need to subclass Content
instead of Node. The example in the docs has been updated. Also, the underlying database schema has changed.

• Improve user database hashing and local roles storage.

• Compatibility fix for Pyramid 1.2.

42 Chapter 10. Detailed Change History

PYTHON MODULE INDEX

k
kotti.events, ??
kotti.views.slots, ??

43

