

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Kotti 0.6 documentation

Kotti: Web Application Framework and CMS

Kotti is a high-level, Pythonic web application framework. It
includes a small and extensible CMS application called the Kotti
CMS.

Kotti is most useful when you are developing applications that

	have complex security requirements,

	use workflows, and/or

	work with hierarchical data.

Built on top of a number of best-of-breed software components, most
notably Pyramid [http://docs.pylonsproject.org/projects/pyramid/dev/] and SQLAlchemy [http://www.sqlalchemy.org/], Kotti introduces only a few concepts
of its own, thus hopefully keeping the learning curve flat for the
developer.

Kotti CMS

You can try out the built-in CMS on Kotti’s demo page [http://kottidemo.danielnouri.org/].

The Kotti CMS is a content management system that’s heavily inspired
by Plone [http://plone.org/]. Its main features are:

	User-friendliness: editors can edit content where it appears;
thus the edit interface is contextual and intuitive

	WYSIWYG editor: includes a rich text editor

	Responsive design: Kotti builds on Twitter Bootstrap [http://twitter.github.com/bootstrap/], which
looks good both on desktop and mobile

	Templating: you can extend the CMS with your own look & feel
with almost no programming required (see Adjust the look & feel (kotti.asset_overrides))

	Add-ons: install a variety of add-ons and customize them as well
as many aspects of the built-in CMS by use of an INI configuration
file (see Configuration)

	Security: the advanced user and permissions management is
intuitive and scales to fit the requirements of large organizations

	Internationalized: the user interface is fully translatable,
Unicode is used everywhere to store data (see Translations)

For Developers

For developers, Kotti delivers a strong foundation for building
different types of web applications that either extend or replace the
built-in CMS.

Developers can add and modify through a well-defined API:

	views,

	templates and layout (both via Pyramid [http://docs.pylonsproject.org/projects/pyramid/dev/]),

	Content types,

	portlets (see kotti.views.slots),

	access control and the user database (see Security),

	workflows (via repoze.workflow [http://docs.repoze.org/workflow/]),

	and much more.

Kotti has a down-to-earth API. Developers working with Kotti will
most of the time make direct use of the Pyramid [http://docs.pylonsproject.org/projects/pyramid/dev/] and SQLAlchemy [http://www.sqlalchemy.org/]
libraries. Other notable components used but not enforced by Kotti
are Colander [http://docs.pylonsproject.org/projects/colander/en/latest/] and Deform [http://docs.pylonsproject.org/projects/deform/en/latest/] for forms, and Chameleon [http://chameleon.repoze.org/] for templating.

Continuous testing [http://travis-ci.org/Pylons/Kotti] against different versions of Python and with
PostgreSQL, MySQL and SQLite and a complete test coverage make
Kotti a stable platform to work with. [image: build status] [http://travis-ci.org/Pylons/Kotti]

Installation

You can download Kotti from the Python Package Index [http://pypi.python.org/pypi/Kotti], it takes only
a few moments to install.

	Installation
	Requirements

	Installation using virtualenv

Configuration

	Configuration
	INI File

	Overview of settings

	kotti.secret and kotti.secret2

	Adjust the look & feel (kotti.asset_overrides)

	Use add-ons
	pyramid.includes

	kotti.available_types

	kotti.populators

	kotti.search_content

	Configure the user interface language

	Configure authentication and authorization

	Sessions

	Caching

	Local navigation

Developer manual

	Developer manual
	Fork and Repo Setup

	Screencast tutorial

	Content types

	Add views, subscribers and more

	Working with content objects

	kotti.views.slots

	kotti.events

	kotti.configurators

	Security

	API
	API Documentation
	kotti.security

	Indices and tables

Cookbook

	Close your site for anonymous users

	Use a different template for the front page (or any other page)

	Image URLs
	Predefined image scale sizes

	Internationalization
	Locale-specific normalization of titles to URLs

	Using Kotti as a library

	Static resource management
	Defining resources in third party addons

	Overriding Kotti’s default definitions

	Using Kotti without Fanstatic

Support and Development

Please report any bugs that you find to the issue tracker [https://github.com/Pylons/Kotti/issues].

If you’ve got questions that aren’t answered by this documentation,
contact the Kotti mailing list [http://groups.google.com/group/kotti] or join the #kotti IRC channel.

Kotti itself is developed on Github [https://github.com/Pylons/Kotti]. You can check out Kotti’s
source code via its GitHub repostiory. Use this command:

git clone git@github.com:Pylons/Kotti

Automated tests

Kotti uses pytest [http://pytest.org], zope.testbrowser [http://pypi.python.org/pypi/zope.testbrowser] and WebTest [http://webtest.pythonpaste.org] for automated
testing.

Before you can run the tests, you must install Kotti’s ‘testing’
extras. Inside your Kotti checkout directory, do:

bin/python setup.py dev

To then run Kotti’s test suite, do:

bin/py.test

Translations

You can find the list of Kotti’s translations here [https://github.com/Pylons/Kotti/tree/master/kotti/locale]. Kotti uses
GNU gettext [http://www.gnu.org/software/gettext/] and .po files for internationalization.

You can set the pyramid.default_locale_name in your configuration
file to choose which language Kotti should serve the user interface
(see Configure the user interface language).

In order to compile your .po files to .mo files, do:

bin/python setup.py compile_catalog

To extract messages and update the existing .pot and .po files, do:

bin/python setup.py extract_messages update_catalog

See also Internationalization from the Cookbook.

Detailed Change History

	Change History
	0.7.2 - 2012-10-02

	0.7.1 - 2012-08-30

	0.7 - 2012-08-16

	0.7rc1 - 2012-08-14

	0.7a6 - 2012-08-07

	0.7a5 - 2012-08-07

	0.7a4 - 2012-06-25

	0.7a3 - 2012-06-15

	0.7a2 - 2012-06-07

	0.7a1 - 2012-06-01

	0.6.3 - 2012-05-08

	0.6.2 - 2012-04-21

	0.6.1 - 2012-03-30

	0.6.0 - 2012-03-22

	0.6.0b3 - 2012-03-17

	0.6.0b2 - 2012-03-16

	0.6.0b1 - 2012-03-15

	0.5.2 - 2012-03-10

	0.5.1 - 2012-02-27

	0.5.0 - 2012-02-15

	0.4.5 - 2012-01-19

	0.4.4 - 2012-01-05

	0.4.3 - 2011-12-22

	0.4.2 - 2011-12-20

	0.4.1 - 2011-12-20

	0.4.0 - 2011-12-14

	0.3.1 - 2011-12-09

	0.3.0 - 2011-11-30

	0.2.10 - 2011-11-22

	0.2.9 - 2011-11-21

	0.2.8 - 2011-11-21

	0.2.7 - 2011-11-20

	0.2.6 - 2011-11-17

	0.2.5 - 2011-11-14

	0.2.4 - 2011-11-13

	0.2.3 - 2011-10-28

	0.2.2 - 2011-10-10

	0.2.1 - 2011-09-29

	0.2 - 2011-09-16

	0.2a2 - 2011-09-05

	0.2a1 - 2011-08-29

 Copyright 2012, Daniel Nouri and contributors.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.7.2

 Installation

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Kotti 0.6 documentation

Installation

Requirements

	Runs on Python versions 2.6 and 2.7.

	Support for PostgreSQL, MySQL and SQLite (tested regularly), and a
list of other SQL databases [http://www.sqlalchemy.org/docs/core/engines.html#supported-databases]

	Support for WSGI and a variety of web servers [http://wsgi.org/wsgi/Servers], including Apache

Installation using virtualenv

It’s recommended to install Kotti inside a virtualenv [http://pypi.python.org/pypi/virtualenv]:

virtualenv mysite --no-site-packages
cd mysite
bin/pip install Kotti==0.7.2 -r https://raw.github.com/Pylons/Kotti/0.7.2/requirements.txt

Kotti uses Paste Deploy [http://pythonpaste.org/deploy/#the-config-file] for configuration and deployment. An
example configuration file is included with Kotti’s source
distribution. Download it:

wget https://github.com/Pylons/Kotti/raw/master/app.ini

Finally, to run Kotti:

bin/pserve app.ini

 Copyright 2012, Daniel Nouri and contributors.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.7.2

 Configuration

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Kotti 0.6 documentation

Configuration

Contents

	Configuration
	INI File

	Overview of settings

	kotti.secret and kotti.secret2

	Adjust the look & feel (kotti.asset_overrides)

	Use add-ons
	pyramid.includes

	kotti.available_types

	kotti.populators

	kotti.search_content

	Configure the user interface language

	Configure authentication and authorization

	Sessions

	Caching

	Local navigation

INI File

Kotti is configured using an INI configuration file. The
Installation section explains how to get hold of a sample
configuration file. The [app:kotti] section in it might look like
this:

[app:kotti]
use = egg:Kotti
pyramid.reload_templates = true
pyramid.debug_authorization = false
pyramid.debug_notfound = false
pyramid.debug_routematch = false
pyramid.debug_templates = true
pyramid.default_locale_name = en
pyramid.includes = pyramid_debugtoolbar
 pyramid_tm
mail.default_sender = yourname@yourhost
sqlalchemy.url = sqlite:///%(here)s/Kotti.db
kotti.site_title = Kotti
kotti.secret = changethis1

Various aspects of your site can be changed right here.

Overview of settings

This table provides an overview of available settings. All these
settings must go into the [app:kotti] section of your Paste Deploy
configuration file.

Only the settings in bold letters required. The rest has defaults.

Do take a look at the required settings (in bold) and adjust them in
your site’s configuration. A few of the settings are less important,
and sometimes only used by developers, not integrators.

kotti.secret and kotti.secret2

The value of kotti.secret will define the initial password of the
admin user. Thus, if you define kotti.secret = mysecret, the
admin password will be mysecret. Log in and change the password
at any time through the web interface.

The kotti.secret token is also used for signing browser session
cookies. The kotti.secret2 token is used for signing the password
reset token.

Here’s an example:

kotti.secret = myadminspassword
kotti.secret2 = $2a$12$VVpW/i1MA2wUUIUHwY6v8O

Note

Do not use these values in your site

Adjust the look & feel (kotti.asset_overrides)

In your settings file, set kotti.asset_overrides to a list of
asset specifications. This allows you to set up a directory in your
package that will mirror Kotti’s own and that allows you to override
Kotti’s templates, CSS files and images on a case by case basis.

As an example, image that we wanted to override Kotti’s master layout
template. Inside the Kotti source, the layout template is at
kotti/templates/view/master.pt. To override this, we would add a
directory to our own package called kotti-overrides and therein
put our own version of the template so that the full path to our own
custom template is
mypackage/kotti-overrides/templates/view/master.pt.

We can then register our kotti-overrides directory by use of the
kotti.asset_overrides setting, like so:

kotti.asset_overrides = mypackage:kotti-overrides/

Use add-ons

Add-ons will usually include in their installation instructions which
settings one should modify to activate them. Configuration settings
that are used to activate add-ons are:

	pyramid.includes

	kotti.available_types

	kotti.base_includes

	kotti.configurators

pyramid.includes

pyramid.includes defines a list of hooks that will be called when
your Kotti app starts up. This gives the opportunity to third party
packages to add registrations to the Pyramid Configurator API in
order to configure views and more.

Here’s an example. Let’s install the kotti_twitter [http://pypi.python.org/pypi/kotti_twitter] extension and
add a Twitter profile widget to the right column of all pages. First
we install the package from PyPI:

bin/pip install kotti_twitter

Then we activate the add-on in our site by editing the
pyramid.includes setting in the [app:kotti] section of our INI
file. (If a line with pyramid.includes does not exist, add it.)

pyramid.includes = kotti_twitter.include_profile_widget

kotti_twitter also asks us to configure the Twitter widget itself, so
we add some more lines right where we were:

kotti_twitter.profile_widget.user = dnouri
kotti_twitter.profile_widget.loop = true

The order in which the includes are listed matters. For example, when
you add two slots on the right hand side, the order in which you list
them in pyramid.includes will control the order in which they will
appear. As an example, here’s a configuration with which the search
widget will be displayed above the profile widget:

pyramid.includes =
 kotti_twitter.include_search_widget
 kotti_twitter.include_profile_widget

Read more about including packages using ‘pyramid.includes’ [http://readthedocs.org/docs/pyramid/en/1.3-branch/narr/environment.html#including-packages] in
the Pyramid documentation.

kotti.available_types

The kotti.available_types setting defines the list of content
types available. The default configuration here is:

kotti.available_types = kotti.resources.Document kotti.resources.File

An example that removes File and adds two content types:

kotti.available_types =
 kotti.resources.Document
 kotti_calendar.resources.Calendar
 kotti_calendar.resources.Event

kotti.populators

The default configuration here is:

kotti.populators = kotti.populate.populate

Populators are functions with no arguments that get called on system
startup. They may then make automatic changes to the database (before
calling transaction.commit()).

kotti.search_content

Kotti provides a simple search over the content types based on
kotti.resources.Content. The default configuration here is:

kotti.search_function = kotti.views.util.default_search_content

You can provide an own search function in an add-on and register this
in your INI file. The return value of the search function is a list of
dictionaries, each representing a search result:

[{'title': 'Title of search result 1',
 'description': 'Description of search result 1',
 'path': '/path/to/search-result-1'},
 {'title': 'Title of search result 2',
 'description': 'Description of search result 2',
 'path': '/path/to/search-result-2'},
 ...
]

An add-on that defines an alternative search function is
kotti_solr [http://pypi.python.org/pypi/kotti_solr], which provides an integration with the Solr [http://lucene.apache.org/solr/] search
engine.

Configure the user interface language

By default, Kotti will display its user interface in English. The
default configuration is:

pyramid.default_locale_name = en

You can configure Kotti to serve a German user interface by saying:

pyramid.default_locale_name = de_DE

The list of available languages is here [https://github.com/Pylons/Kotti/tree/master/kotti/locale].

Configure authentication and authorization

You can override the authentication and authorization policy that
Kotti uses. By default, Kotti uses these factories:

kotti.authn_policy_factory = kotti.authtkt_factory
kotti.authz_policy_factory = kotti.acl_factory

These settings correspond to
pyramid.authentication.AuthTktAuthenticationPolicy [http://docs.pylonsproject.org/projects/pyramid/dev/api/authentication.html] and
pyramid.authorization.ACLAuthorizationPolicy [http://docs.pylonsproject.org/projects/pyramid/dev/api/authorization.html] being used.

Sessions

The kotti.session_factory configuration variable allows the
overriding of the default session factory. By default, Kotti uses
pyramid_beaker for sessions.

Caching

You can override Kotti’s default set of cache headers by changing the
kotti.views.cache.caching_policies dictionary, which maps policies
to headers. E.g. the Cache Resource entry there caches all static
resources for 32 days. You can also choose which responses match to
which caching policy by overriding Kotti’s default cache policy
chooser through the use of the kotti.caching_policy_chooser
configuration variable. The default is:

kotti.caching_policy_chooser = kotti.views.cache.default_caching_policy_chooser

Local navigation

Kotti provides a build in navigation widget, which is disabled by default.
To enable the navigation widget add the following to the pyramid.includes
setting:

pyramid.includes = kotti.views.slots.includeme_local_navigation

The add-on kotti_navigation [http://pypi.python.org/pypi/kotti_navigation] provides also a navigation widget with more features.
With this add-on included your configuration looks like:

pyramid.includes = kotti_navigation.include_navigation_widget

Check the documentation of kotti_navigation [http://pypi.python.org/pypi/kotti_navigation] for more options.

 Copyright 2012, Daniel Nouri and contributors.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.7.2

 Developer manual

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Kotti 0.6 documentation

Developer manual

Read the Configuration section first to understand which hooks
both integrators and developers can use to customize and extend Kotti.

Contents

	Developer manual
	Fork and Repo Setup

	Screencast tutorial

	Content types

	Add views, subscribers and more

	Working with content objects

	kotti.views.slots

	kotti.events

	kotti.configurators

	Security

	API

Fork and Repo Setup

To contribute to Kotti, and to test and run against Master, fork pylons/Kotti to
your github account, and follow the usual steps to get a local clone, with origin
as your fork, and with upstream as the pylons/Kotti repo. Then, you will be able
to make branches for contributing, etc. Steps would be something like this:

git clone https://github.com/your_github/Kotti.git

cd Kotti

git remote add upstream git://github.com/Pylons/Kotti.git

Now you should be set up to make branches for this and that, doing a pull request
from a branch, and the usual git procedures. You may wish to read the
Github fork-a-repo help [https://help.github.com/articles/fork-a-repo].

To run and develop within your clone, do these steps:

virtualenv . --no-site-packages

bin/python setup.py develop

This will create a new virtualenv “in place” and do the python develop steps to
use the Kotti code in the repo.

Run bin/pip install kotti_someaddon, and add a kotti_someaddon entry to app.ini,
as you would do normally, to use add-ons.

Screencast tutorial

Here’s a screencast that guides you through the process of creating a
simple Kotti add-on for visitor comments:

 API Documentation

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Kotti 0.6 documentation

 	Developer manual

API Documentation

kotti.security

	
kotti.security.set_groups(name, context, groups_to_set=())[source]

	Set the list of groups for principal with given name and in
given context.

	
kotti.security.list_groups(name, context=None)[source]

	List groups for principal with a given name.

The optional context argument may be passed to check the list
of groups in a given context.

	
class kotti.security.AbstractPrincipals[source]

	This class serves as documentation and defines what methods are
expected from a Principals database.

Principals mostly provides dict-like access to the principal
objects in the database. In addition, there’s the ‘search’ method
which allows searching users and groups.

‘hash_password’ is for initial hashing of a clear text password,
while ‘validate_password’ is used by the login to see if the
entered password matches the hashed password that’s already in the
database.

Use the ‘kotti.principals’ settings variable to override Kotti’s
default Principals implementation with your own.

	
hash_password(password)[source]

	Return a hash of the given password.

This is what’s stored in the database as ‘principal.password’.

	
keys()[source]

	Return a list of principal ids that are in the database.

	
search(**kwargs)[source]

	Return an iterable with principal objects that correspond
to the search arguments passed in.

This example would return all principals with the id ‘bob’:

get_principals().search(name=u’bob’)

Here, we ask for all principals that have ‘bob’ in either
their ‘name’ or their ‘title’. We pass ‘bob‘ instead of
‘bob’ to indicate that we want case-insensitive substring
matching:

get_principals().search(name=u’bob‘, title=u’bob‘)

This call should fail with AttributeError unless there’s a
‘foo’ attribute on principal objects that supports search:

get_principals().search(name=u’bob’, foo=u’bar’)

	
validate_password(clear, hashed)[source]

	Returns True if the clear text password matches the hash.

	
class kotti.security.Principal(name, password=None, active=True, confirm_token=None, title=u'', email=None, groups=())[source]

	A minimal ‘Principal’ implementation.

The attributes on this object correspond to what one ought to
implement to get full support by the system. You’re free to add
additional attributes.

	As convenience, when passing ‘password’ in the initializer, it
is hashed using ‘get_principals().hash_password’

	The boolean ‘active’ attribute defines whether a principal may
log in. This allows the deactivation of accounts without
deleting them.

	The ‘confirm_token’ attribute is set whenever a user has
forgotten their password. This token is used to identify the
receiver of the email. This attribute should be set to
‘None’ once confirmation has succeeded.

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2012, Daniel Nouri and contributors.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.7.2

 Close your site for anonymous users

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Kotti 0.6 documentation

Close your site for anonymous users

This recipe describes how to configure Kotti to require users to log
in before they can view any of your site’s pages.

To achieve this, we’ll have to set our site’s ACL. A custom populator
will help us do that (see kotti.populators).

Remember that the default site ACL gives view privileges to every
user, including anonymous (see Security). We’ll thus
have to restrict the view permission to the viewer role:

from kotti.resources import get_root

SITE_ACL = [
 (u'Allow', u'role:viewer', [u'view']),
 (u'Allow', u'role:editor', [u'view', u'add', u'edit']),
]

def populate():
 site = get_root()
 site.__acl__ = SITE_ACL

 Copyright 2012, Daniel Nouri and contributors.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.7.2

 Use a different template for the front page (or any other page)

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Kotti 0.6 documentation

Use a different template for the front page (or any other page)

This recipe describes a way to override the template used for a
specific object in your database. Imagine you want your front page to
stand out from the rest of your site and use a unique layout.

We can set the default view for any content object by settings its
default_view attribute, which is usually None. Inside our own
populator (see kotti.populators), we write this:

from kotti.resources import get_root

def populate():
 site = get_root()
 site.default_view = 'front-page'

What’s left is to register the front-page view:

def includeme(config):
 config.add_view(
 name='front-page',
 renderer='myapp:templates/front-page.pt',
)

Note

If you want to override instead the template of all pages, not
only that of a particluar page, you should look at the
kotti.override_assets setting (Adjust the look & feel (kotti.asset_overrides)).

 Copyright 2012, Daniel Nouri and contributors.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.7.2

 Image URLs

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Kotti 0.6 documentation

Image URLs

Kotti provides on-the-fly image scaling by utilizing `plone.scale`_.

Images can be referenced by this URL schema: /path/to/image_content_object/image[/<image_scale>]/download] where <image_scale> is a predefined image scale (see below).

If the last URL path segment is download, the image will be served with Content-disposition: attachment otherwise it will be served with Content-disposition: inline.

Predefined image scale sizes

You may define image scale sizes in your .ini file by setting values for kotti.image_scales.<scale_name> to values of the form <max_width>x<max_height> (e.g. kotti.image_scales.thumb = 160x120 with the resulting scale name thumb).

span1 (60x120) to span12 (1160x2320) are always defined (with values corresponding to the Twitter Bootstrap default grid sizes), but their values can be overwritten by setting kotti.image_scales.span<N> to different values in your .ini file.

 Copyright 2012, Daniel Nouri and contributors.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.7.2

 Internationalization

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Kotti 0.6 documentation

Internationalization

Locale-specific normalization of titles to URLs

Kotti normalizes document titles to URLs by stripping away language
specific characters like umlauts or accented characters. This is often
undesirable. If you want a locale-specific normalization of titles,
you have to configure the package plone.i18n which is used by Kotti
for the normalization task.

To configure plone.i18n, you have to use ZCML. Fortunately,
plone.i18n comes with normalizers for many different locales, so you
often don’t have to implement one by yourself. You simply have to
activate them by loading plone.i18n‘s main ZCML file.

ZCML configuration is not supported out of the box, you first have to
install the pyramid_zcml package. To load plone.i18n‘s
configuration, you also have to install the package
zope.browserresource.

Let’s assume that you put all your project’s configurations,
overridden templates, static files, and so on in a distinct package,
which generally is good practice. Add both required packages to the
dependencies in you setup.py, which should also include Kotti and
extensions you want to use.

You can then load plone.i18n‘s configuration via a ZCML file. For
this, create a file configure.zcml (or whatever name you prefer)
like this:

<configure xmlns="http://pylonshq.com/pyramid">
 <include package="pyramid_zcml" />
 <include package="zope.browserresource" file="meta.zcml" />
 <include package="zope.browserresource" />
 <include package="plone.i18n" />
</configure>

To load your configure.zcml on startup, you have to add a startup
hook. For example, simply add the following function to your package’s
__init__.py module:

def includeme(config):
 config.include('pyramid_zcml')
 config.load_zcml('configure.zcml')

Setup your locale and the hook with the following settings in
your INI file:

pyramid.default_locale_name = de_DE
pyramid.includes = mypackage.includeme

 Copyright 2012, Daniel Nouri and contributors.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.7.2

 Using Kotti as a library

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Kotti 0.6 documentation

Using Kotti as a library

Instead of taking control of your application, and delegating to your
extension, you may use Kotti in applications where you define the
main entry point yourself.

You’ll anyway still need to call kotti.base_configure from your
code to set up essential parts of Kotti:

default_settings = {
 'pyramid.includes': 'myapp myapp.views',
 'kotti.authn_policy_factory': 'myapp.authn_policy_factory',
 'kotti.base_includes': (
 'kotti kotti.views kotti.views.login kotti.views.users'),
 'kotti.use_tables': 'orders principals',
 'kotti.populators': 'myapp.resources.populate',
 'kotti.principals_factory': 'myapp.security.Principals',
 'kotti.root_factory': 'myapp.resources.Root',
 'kotti.site_title': 'Myapp',
 }

def main(global_config, **settings):
 settings2 = default_settings.copy()
 settings2.update(settings)
 config = kotti.base_configure(global_config, **settings2)
 return config.make_wsgi_app()

The above example configures Kotti so that its user database and
security subsystem are set up. Only a handful of tables
(kotti.use_tables) and a handful of Kotti’s views
(kotti.base_includes) are activated. Furthermore, our application
is configured to use a custom root factory (root node) and a custom
populator.

In your PasteDeploy configuration you’d then wire up your app
directly, maybe like this:

[app:myapp]
use = egg:myapp
pyramid.includes = pyramid_tm
mail.default_sender = yourname@yourhost
sqlalchemy.url = sqlite:///%(here)s/myapp.db
kotti.secret = secret

[filter:fanstatic]
use = egg:fanstatic#fanstatic

[pipeline:main]
pipeline =
 fanstatic
 myapp

 Copyright 2012, Daniel Nouri and contributors.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.7.2

 Static resource management

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Kotti 0.6 documentation

Static resource management

In the default settings Kotti uses Fanstatic [http://www.fanstatic.org/] to manage its static resources (i.e. CSS, JS, etc.).
This is accomplished by a WSGI pipeline:

[app:kotti]
use = egg:kotti

[filter:fanstatic]
use = egg:fanstatic#fanstatic

[pipeline:main]
pipeline =
 fanstatic
 kotti

[server:main]
use = egg:waitress#main
host = 127.0.0.1
port = 5000

Defining resources in third party addons

Defining your own resources and have them rendered in the pages produced by Kotti is also easy.
You just need to define resource objects (as described in the corresponding Fanstatic documentation [http://fanstatic.readthedocs.org/en/latest/library.html]) and add them to either edit_needed or view_needed in kotti.static:

from fanstatic import Library
from fanstatic import Resource
from kotti.static import edit_needed
from kotti.static import view_needed

my_library = Library('my_package', 'resources')
my_resource = Resource(my_library, "my.js")

def includeme(config):
 # add to edit_needed if the resource is needed in edit views
 edit_needed.add(my_resource)
 # add to view_needed if the resource is needed in edit views
 view_needed.add(my_resource)

Don’t forget to add an entry_point to your package’s setup.py:

entry_points={
 'fanstatic.libraries': [
 'foo = my_package:my_library',
],
 },

Fanstatic has many more useful options, such as being able to define additional minified resources for deployment.
Please consult Fanstatic’s documentation [http://fanstatic.readthedocs.org/] for a complete list of options.

Overriding Kotti’s default definitions

You can ovveride the resources to be included in the configuration file.

The defaults are

[app:kotti]

kotti.static.edit_needed = kotti.static.edit_needed
kotti.static.view_needed = kotti.static.view_needed

which ist actually a shortcut for

[app:kotti]

kotti.static.edit_needed =
 kotti.static.edit_needed_js
 kotti.static.edit_needed_css

kotti.static.view_needed =
 kotti.static.view_needed_js
 kotti.static.view_needed_css

You may add as many kotti.static.NeededGroup, fanstatic.Group or fanstatic.Resource (or actually anything that provides a .need() method) objects in dotted notation as you want.

Say you want to completely abandon Kotti’s CSS resources (and use your own for both view and edit views) but use Kotti’s JS resources plus an additional JS resource defined within your app (only in edit views). Your configuration file might look like this:

[app:kotti]

kotti.static.edit_needed =
 kotti.static.edit_needed_js
 myapp.static.js_resource
 myapp.static.css_resource

kotti.static.view_needed =
 kotti.static.view_needed_js
 myapp.static.css_resource

Using Kotti without Fanstatic

To handle resources yourself, you can easily and completely turn off fanstatic:

[app:main]
use = egg:kotti

[server:main]
use = egg:waitress#main
host = 127.0.0.1
port = 5000

 Copyright 2012, Daniel Nouri and contributors.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.7.2

 Change History

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Kotti 0.6 documentation

Change History

0.7.2 - 2012-10-02

	Improve installation instructions. Now uses tagged requirements.txt
file.

	Added event request POST vars to the request for the slot viewlet.

	Added IFile and IImage interfaces to allow for file and image
subclasses to reuse the same view (registrations).

0.7.1 - 2012-08-30

	Add deletion of users to the users management.

	Fix tag support for files and images.

	Upgrade to Twitter Bootstrap 2.1
	remove lots of CSS that is no longer needed

	fix responsive layout that was broken on some phone size
screen resolutions

	Add “Site Setup” submenu / remove @@setup view.

0.7 - 2012-08-16

	Fix critical issue with migrations where version number would not be
persisted in the Alembic versions table.

0.7rc1 - 2012-08-14

	No changes.

0.7a6 - 2012-08-07

	Fix a bug with connections in the migration script. This would
previously cause Postgres to deadlock when calling
kotti-migrate.

0.7a5 - 2012-08-07

	Add workflow support based on repoze.workflow. A simple
workflow is included in workflow.zcml and is active by default.
Use kotti.use_workflow = 0 to deactivate. The workflow support
adds a drop-down that allows users with state_change permission
to modify the workflow state.

	Change the default layout

Kotti’s new default look is now even closer to the Bootstrap
documentation, with the main nav bar at the very top and the
edit bar right below.

Upgrade note: if you have a customized main_template and want to
use the recent changes in that template, you need to swap
positions of nav.pt and editor-bar.pt api.render_template
calls and remove the search.pt call from the main_template
(it’s now called from within nav.pt).
Everything else is completely optional.

	Add migrations via Alembic. A new script kotti-migrate helps
with managing database upgrades of Kotti and Kotti add-ons. Run
kotti-migrate <your.ini> upgrade to upgrade the Kotti database
to the latest version.

Add-on authors should see the kotti.migrate module’s docstring
for more details.

	Make Document.body searchable (and therefore the search feature
actually useful for the first time).

	Add a “minify” command to compress CSS and JS resources.

To use it run:

python setup.py dev
python setup.py minify

The minify command assumes, that all resources are in
kotti/static/. YUI compressor is used for compression
and will be automatically installed when running
python setup.py dev. However, you still need a JVM on
your development machine to be able to use the minify
command.

	Fix settings: only values for kotti* keys should be converted to
unicode strings.

	Fix #89: Validate email address for uniqueness when user changes it.

	Fix #91: Styling of search box.

	Fix #104: Make fanstatic resources completely overridable.

	Enabled deferred loading on File.data column.

Migrations

	Upgrading from 0.6 to 0.7 requires you to run a migration script on
your database. To run the migration, call:

$ bin/kotti-migrate <myconfig.ini> upgrade

Make sure you backup your database before running the migration!

	Upgrading to 0.7 will initialize workfow state and permissions for
all your content objects, unless you’ve overwritten
kotti-use_workflow to not use a workflow (use 0) or a custom
one.

It is important that sites that have custom permissions,
e.g. custom modifications to SITE_ACL, turn off workflow support
prior to running the upgrade script.

0.7a4 - 2012-06-25

	Add minified versions JS/CSS files.

	Fix #88: logging in with email.

	Update translations.

0.7a3 - 2012-06-15

	Include kotti.tinymce which adds plug-ins for image and file
upload and content linking to the TinyMCE rich text editor.

	Slot renderers have been replaced by normal views (or viewlets).
kotti.views.slots.register has been deprecated in favour of
kotti.views.slots.assign_slot, which works similarly, but takes
a view name of a registered view instead of a function for
registration.

	Switch to fanstatic for static resource management.

Upgrade note: This requires changes to existing *.ini application
configuration files. Concretely, you’ll need to add a
filter:fanstatic section and a pipeline:main section and
rename an existing app:main section to app:Kotti or the
like. Take a look at Kotti’s own development.ini for an
example.

	Retire the undocumented kotti.resources.Setting class and table.
kotti.get_settings will now return registry.settings
straight, without looking for persistent overrides in the database.

	Drop support for Pyramid<1.3, since we use
pyramid.response.FileResponse, and kotti_tinymce uses
pyramid.view.view_defaults.

	Fix encoding error with non-ascii passwords.

0.7a2 - 2012-06-07

	Do not allow inactive users to reset their password.

0.7a1 - 2012-06-01

Features

	Add a new ‘Image’ content type and image scaling, originally from
the kotti_image_gallery add-on. See kotti.image_scales.*
settings.

	Add search and related setting kotti.search_content.

	Add subscriber to set cache headers based on caching rules. See
also related setting kotti.caching_policy_chooser.

	Remove TinyMCE from the core.

	Move email templates into page templates in
kotti:templates/email-set-password.pt and
kotti:templates/email-reset-password.pt. This is to make them
easier to translate and customize. This deprecates
kotti.message.send_set_password.

	Add a ‘edit_inhead’ slot for stuff that goes into the edit
interface’s head. ‘inhead’ is no longer be used in
‘edit/master.pt’.

	For more details, see also
http://danielnouri.org/notes/2012/05/28/kotti-werkpalast-sprint-wrap-up/

Bugs

	Fix bug with group edit views.
See https://github.com/Pylons/Kotti/pull/61

	Fix bug where user.last_login_date was not set during automic
login after the set password screen.

0.6.3 - 2012-05-08

	Add tag support. All content objects now have tags. They can be
added in the UI using the “jQuery UI Tag-it!” widget.
See https://github.com/Pylons/Kotti/pull/55 .

	Fix a bug with file download performance.

0.6.2 - 2012-04-21

	Links in Navigation view lead to node view. Added edit links
to view the node’s edit form.

	Hitting ‘Cancel’ now returns to the context node for add/edit views

0.6.1 - 2012-03-30

	Added button to show/hide nodes from navigation in the order screen.

	The ‘rename’ action now strips slashes out of names. Fixes #53.

	Add Dutch translation.

	Allow translation of TinyMCE’s UI (starting with deform 0.9.5)

	Separated out testing dependencies. Run bin/python setup.py dev
to install Kotti with extra dependencies for testing.

	Deprecate ‘kotti.includes’ setting. Use the standard
‘pyramid.includes’ instead.

	Setting ‘Node.__acl__’ to the empty list will now persist the empty
list instead of setting ‘None’.

	Let ‘pyramid_deform’ take care of configuring deform with
translation dirs and search paths.

0.6.0 - 2012-03-22

	Add Japanese translation.

	Enforce lowercase user names and email with registration and login.

	Moved SQLAlchemy related stuff from kotti.util into kotti.sqla.

	You can also append to ‘Node.__acl__’ now in addition to setting the
attribute.

0.6.0b3 - 2012-03-17

	Have the automatic __tablename__ and polymorphic_identity
for CamelCase class names use underscores, so a class
‘MyFancyDocument’ gets a table name of ‘my_fancy_documents’ and a
type of ‘my_fancy_document’.

0.6.0b2 - 2012-03-16

	Make the ‘item_type’ attribute of AddForm optional. Fixes #41.

	kotti.util.title_to_name will now return a name with a maximum
length of 40. Fixes #31.

0.6.0b1 - 2012-03-15

	Use declarative style instead of class mapper for SQLAlchemy resources.

Unfortunately, this change is backwards incompatible with existing
content types (not with existing databases however). Updating your
types to use Declarative is simple. See kotti_calendar for an
example:
https://github.com/dnouri/kotti_calendar/commit/509d46bd596ff338e0a88f481339882de72e49e0#diff-1

0.5.2 - 2012-03-10

	A new ‘Actions’ menu makes copy, paste, delete and rename of items
more accessible.

	Add German translation.

	Populators no longer need to call transaction.commit()
themselves.

0.5.1 - 2012-02-27

	Internationalize user interface. Add Portuguese as the first
translation.

	A new ‘Add’ menu in the editor toolbar allows for a more intuitive
adding of items in the CMS.

	Refine Node.copy. No longer copy over local roles per default.

0.5.0 - 2012-02-15

	Move Kotti’s default user interface to use Twitter Bootstrap 2.

	Add a new ‘File’ content type.

	Add CSRF protection to some forms.

	Remove Kotti’s FormController in favor of using pyramid_deform.

	Use plone.i18n to normalize titles to URL parts.

	Add a separate navigation screen that replaces the former
intelligent breadcrumbs menu.

	Use pyramid_beaker as the default session factory.

	Make kotti.messages.send_set_password a bit more flexible.

0.4.5 - 2012-01-19

	Add ‘kotti.security.has_permission’ which may be used instead of
‘pyramid.security.has_permission’.

The difference is that Kotti’s version will set the “authorization
context” to be the context that you pass to ‘has_permission’. The
effect is that ‘list_groups’ will return a more correct list of
local roles, i.e. the groups in the given context instead of
‘request.context’.

	Add a template (‘forbidden.pt’) for when user is logged in but still
getting HTTPForbidden.

0.4.4 - 2012-01-05

	The “Forbidden View” will no longer redirect clients that don’t
accept ‘text/html’ to the login form.

	Fix bug with ‘kotti.site_title’ setting.

0.4.3 - 2011-12-22

	Add ‘kotti.root_factory’ setting which allows the override Kotti’s
default Pyramid root factory. Also, make master templates more
robust so that a minimal root with ‘__parent__’ and ‘__name__’ can
be rendered.

	The ‘kotti.tests’ was factored out. Tests should now import from
‘kotti.testing’.

0.4.2 - 2011-12-20

	More convenient overrides for add-on packages by better use of
‘config.commit()’.

0.4.1 - 2011-12-20

	Modularize Kotti’s Paste App Factory ‘kotti.main’.

	Allow explicit setting of tables that Kotti creates
(‘kotti.use_tables’).

0.4.0 - 2011-12-14

	Remove configuration variables ‘kotti.templates.*’ in favour of
‘kotti.asset_overrides’, which uses Pyramid asset specs and their
overrides.

	Remove ‘TemplateAPI.__getitem__’ and instead add ‘TemplateAPI.macro’
which has a similar but less ‘special’ API.

	Factor snippets in ‘kotti/templates/snippets.pt’ out into their own
templates. Use ‘api.render_template’ to render them instead of
macros.

0.3.1 - 2011-12-09

	Add ‘keys’ method to mutation dicts (see 0.3.0).

0.3.0 - 2011-11-30

	Replace Node.__annotations__ in favor of an extended Node.annotations.

Node.annotations will attempt to not only recognize changes to
subobjects of type dict, it will also handle list objects
transparently. That is, changing arbitrary JSON structures should
just work with regard to calling node.annotations.changed() when
the structure was changed.

0.2.10 - 2011-11-22

	‘api.format_datetime’ now also accepts a timestamp in addition to datetime.

0.2.9 - 2011-11-21

	Remove MANIFEST.in in favour of using ‘setuptools-git’.

0.2.8 - 2011-11-21

	Remove ‘PasteScript’ dependency since that would result in spurious
errors when installing Kotti. See
http://jenkins.danielnouri.org/job/Kotti/42/TOXENV=py27/console

0.2.7 - 2011-11-20

	Add ‘PasteScript’ dependency.

	Fix #11 where ‘python setup.py test’ would look into a hard-coded
‘bin’ directory.

	Structural analysis documentation. (Unfinished; in ‘analysis’ directory
during development. Will be moved to main docs when finished.)

0.2.6 - 2011-11-17

	Add Node.__annotations__ convenience attribute.

Node.__annotations__ will wrap the annotations dict in such a way
that both item and attribute access are possible. It’ll also record
changes to dicts inside dicts and mark the parent __annotations__
attribute as dirty.

	Add a welcome page.

	Delete the demo added in version 0.2.4.

0.2.5 - 2011-11-14

	Add ‘TemplateAPI.render_template’; allow templates to be rendered
conveniently from templates.

0.2.4 - 2011-11-13

	Adjust for Pyramid 1.2: INI file, pyramid_tm, Wsgiref server, pcreate and
pserve. (MO)

	Add Kotti Demo source and documentation.

0.2.3 - 2011-10-28

	Node.__getitem__ will now also accept a tuple as key.

folder['1', '2'] is the same as folder['1']['2'], just more
efficient.

	Added a new cache decorator based on repoze.lru.

0.2.2 - 2011-10-10

	Change the function signature of kotti.authn_policy_factory,
kotti.authz_policy_factory and kotti.session_factory to
include all settings from the configuration file.

0.2.1 - 2011-09-29

	Minor changes to events setup code to ease usage in tests.

0.2 - 2011-09-16

	No changes.

0.2a2 - 2011-09-05

	Fix templates to be compatible with Chameleon 2. Also, require
Chameleon>=2.

	Require pyramid>=1.2. Also, enable pyramid_debugtoolbar for
development.ini profile.

0.2a1 - 2011-08-29

	Improve database schema for Nodes. Split Node class into
Node and Content.

This change is backward incompatible in that existing content types
in your code will need to subclass Content instead of Node.
The example in the docs has been updated. Also, the underlying
database schema has changed.

	Improve user database hashing and local roles storage.

	Compatibility fix for Pyramid 1.2.

 Copyright 2012, Daniel Nouri and contributors.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.7.2

 Python Module Index

 Navigation

 	
 index

 	
 modules |

 	Kotti 0.6 documentation

 Python Module Index

 k

 			

 		
 k	

 	[image: -]
 	
 kotti	

 	
 	
 kotti.events	

 	
 	
 kotti.views.slots	

 Copyright 2012, Daniel Nouri and contributors.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.7.2

 Index

 Navigation

 	
 index

 	
 modules |

 	Kotti 0.6 documentation

Index

 A
 | H
 | K
 | L
 | P
 | S
 | V

A

 	

 	AbstractPrincipals (class in kotti.security)

H

 	

 	hash_password() (kotti.security.AbstractPrincipals method)

K

 	

 	keys() (kotti.security.AbstractPrincipals method)

 	kotti.events (module)

 	

 	kotti.views.slots (module)

L

 	

 	list_groups() (in module kotti.security)

P

 	

 	Principal (class in kotti.security)

S

 	

 	search() (kotti.security.AbstractPrincipals method)

 	

 	set_groups() (in module kotti.security)

V

 	

 	validate_password() (kotti.security.AbstractPrincipals method)

 Copyright 2012, Daniel Nouri and contributors.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.7.2

 _static/minus.png

_static/comment-bright.png

search.html

 Navigation

 		
 index

 		
 modules |

 		Kotti 0.6 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Daniel Nouri and contributors.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

 		0.7.2

_modules/kotti/security.html

 Navigation

 		
 index

 		
 modules |

 		Kotti 0.6 documentation »

 		Module code »

 Source code for kotti.security

from __future__ import with_statement
from contextlib import contextmanager
from datetime import datetime
from UserDict import DictMixin

import bcrypt
from sqlalchemy import Boolean
from sqlalchemy import Column
from sqlalchemy import DateTime
from sqlalchemy import Integer
from sqlalchemy import Unicode
from sqlalchemy import func
from sqlalchemy.sql.expression import or_
from sqlalchemy.orm.exc import NoResultFound
from pyramid.location import lineage
from pyramid.security import authenticated_userid
from pyramid.security import has_permission as base_has_permission
from pyramid.security import view_execution_permitted

from kotti import get_settings
from kotti import DBSession
from kotti import Base
from kotti.sqla import JsonType
from kotti.util import _
from kotti.util import request_cache
from kotti.util import DontCache

def get_principals():
 return get_settings()['kotti.principals_factory'][0]()

@request_cache(lambda request: None)
def get_user(request):
 userid = authenticated_userid(request)
 return get_principals().get(userid)

def has_permission(permission, context, request):
 with authz_context(context, request):
 return base_has_permission(permission, context, request)

[docs]class Principal(Base):
 """A minimal 'Principal' implementation.

 The attributes on this object correspond to what one ought to
 implement to get full support by the system. You're free to add
 additional attributes.

 - As convenience, when passing 'password' in the initializer, it
 is hashed using 'get_principals().hash_password'

 - The boolean 'active' attribute defines whether a principal may
 log in. This allows the deactivation of accounts without
 deleting them.

 - The 'confirm_token' attribute is set whenever a user has
 forgotten their password. This token is used to identify the
 receiver of the email. This attribute should be set to
 'None' once confirmation has succeeded.
 """
 __tablename__ = 'principals'
 __mapper_args__ = dict(
 order_by='principals.name',
)

 id = Column(Integer, primary_key=True)
 name = Column(Unicode(100), unique=True)
 password = Column(Unicode(100))
 active = Column(Boolean)
 confirm_token = Column(Unicode(100))
 title = Column(Unicode(100), nullable=False)
 email = Column(Unicode(100), unique=True)
 groups = Column(JsonType(), nullable=False)
 creation_date = Column(DateTime(), nullable=False)
 last_login_date = Column(DateTime())

 def __init__(self, name, password=None, active=True, confirm_token=None,
 title=u"", email=None, groups=()):
 self.name = name
 if password is not None:
 password = get_principals().hash_password(password)
 self.password = password
 self.active = active
 self.confirm_token = confirm_token
 self.title = title
 self.email = email
 self.groups = groups
 self.creation_date = datetime.now()
 self.last_login_date = None

 def __repr__(self): # pragma: no cover
 return '<Principal %r>' % self.name

[docs]class AbstractPrincipals(object):
 """This class serves as documentation and defines what methods are
 expected from a Principals database.

 Principals mostly provides dict-like access to the principal
 objects in the database. In addition, there's the 'search' method
 which allows searching users and groups.

 'hash_password' is for initial hashing of a clear text password,
 while 'validate_password' is used by the login to see if the
 entered password matches the hashed password that's already in the
 database.

 Use the 'kotti.principals' settings variable to override Kotti's
 default Principals implementation with your own.
 """
 def __getitem__(self, name):
 """Return the Principal object with the id 'name'.
 """

 def __setitem__(self, name, principal):
 """Add a given Principal object to the database.

 'name' is expected to the the same as 'principal.name'.

 'principal' may also be a dict of attributes.
 """

 def __delitem__(self, name):
 """Remove the principal with the given name from the database.
 """

[docs] def keys(self):
 """Return a list of principal ids that are in the database.
 """

[docs] def search(self, **kwargs):
 """Return an iterable with principal objects that correspond
 to the search arguments passed in.

 This example would return all principals with the id 'bob':

 get_principals().search(name=u'bob')

 Here, we ask for all principals that have 'bob' in either
 their 'name' or their 'title'. We pass '*bob*' instead of
 'bob' to indicate that we want case-insensitive substring
 matching:

 get_principals().search(name=u'*bob*', title=u'*bob*')

 This call should fail with AttributeError unless there's a
 'foo' attribute on principal objects that supports search:

 get_principals().search(name=u'bob', foo=u'bar')
 """

[docs] def hash_password(self, password):
 """Return a hash of the given password.

 This is what's stored in the database as 'principal.password'.
 """

[docs] def validate_password(self, clear, hashed):
 """Returns True if the clear text password matches the hash.
 """

ROLES = {
 u'role:viewer': Principal(u'role:viewer', title=_(u'Viewer')),
 u'role:editor': Principal(u'role:editor', title=_(u'Editor')),
 u'role:owner': Principal(u'role:owner', title=_(u'Owner')),
 u'role:admin': Principal(u'role:admin', title=_(u'Admin')),
 }
_DEFAULT_ROLES = ROLES.copy()

These roles are visible in the sharing tab
SHARING_ROLES = [u'role:viewer', u'role:editor', u'role:owner']
USER_MANAGEMENT_ROLES = SHARING_ROLES + ['role:admin']
_DEFAULT_SHARING_ROLES = SHARING_ROLES[:]
_DEFAULT_USER_MANAGEMENT_ROLES = USER_MANAGEMENT_ROLES[:]

This is the ACL that gets set on the site root on creation. Note
that this is only really useful if you're _not_ using workflow. If
you are, then you should look at the permissions in workflow.zcml.
SITE_ACL = [
 ['Allow', 'system.Everyone', ['view']],
 ['Allow', 'role:viewer', ['view']],
 ['Allow', 'role:editor', ['view', 'add', 'edit', 'state_change']],
 ['Allow', 'role:owner', ['view', 'add', 'edit', 'manage', 'state_change']],
]

def set_roles(roles_dict):
 ROLES.clear()
 ROLES.update(roles_dict)

def set_sharing_roles(role_names):
 SHARING_ROLES[:] = role_names

def set_user_management_roles(role_names):
 USER_MANAGEMENT_ROLES[:] = role_names

def reset_roles():
 ROLES.clear()
 ROLES.update(_DEFAULT_ROLES)

def reset_sharing_roles():
 SHARING_ROLES[:] = _DEFAULT_SHARING_ROLES

def reset_user_management_roles():
 USER_MANAGEMENT_ROLES[:] = _DEFAULT_USER_MANAGEMENT_ROLES

def reset():
 reset_roles()
 reset_sharing_roles()
 reset_user_management_roles()

class PersistentACLMixin(object):
 def _get_acl(self):
 if self._acl is None:
 raise AttributeError('__acl__')
 return self._acl

 def _set_acl(self, value):
 self._acl = value

 def _del_acl(self):
 self._acl = None

 __acl__ = property(_get_acl, _set_acl, _del_acl)

def _cachekey_list_groups_raw(name, context):
 context_id = context is not None and getattr(context, 'id', id(context))
 return (name, context_id)

@request_cache(_cachekey_list_groups_raw)
def list_groups_raw(name, context):
 """A set of group names in given ``context`` for ``name``.

 Only groups defined in context will be considered, therefore no
 global or inherited groups are returned.
 """
 from kotti.resources import LocalGroup
 from kotti.resources import Node

 if isinstance(context, Node):
 return set(
 r[0] for r in DBSession.query(LocalGroup.group_name).filter(
 LocalGroup.node_id == context.id).filter(
 LocalGroup.principal_name == name).all()
)
 return set()

[docs]def list_groups(name, context=None):
 """List groups for principal with a given ``name``.

 The optional ``context`` argument may be passed to check the list
 of groups in a given context.
 """
 return list_groups_ext(name, context)[0]

def _cachekey_list_groups_ext(name, context=None, _seen=None, _inherited=None):
 if _seen is not None or _inherited is not None:
 raise DontCache
 else:
 context_id = getattr(context, 'id', id(context))
 return (name, context_id)

@request_cache(_cachekey_list_groups_ext)
def list_groups_ext(name, context=None, _seen=None, _inherited=None):
 name = unicode(name)
 groups = set()
 recursing = _inherited is not None
 _inherited = _inherited or set()

 # Add groups from principal db:
 principal = get_principals().get(name)
 if principal is not None:
 groups.update(principal.groups)
 if context is not None or (context is None and _seen is not None):
 _inherited.update(principal.groups)

 if _seen is None:
 _seen = set([name])

 # Add local groups:
 if context is not None:
 items = lineage(context)
 for idx, item in enumerate(items):
 group_names = [i for i in list_groups_raw(name, item)
 if i not in _seen]
 groups.update(group_names)
 if recursing or idx != 0:
 _inherited.update(group_names)

 new_groups = groups - _seen
 _seen.update(new_groups)
 for group_name in new_groups:
 g, i = list_groups_ext(
 group_name, context, _seen=_seen, _inherited=_inherited)
 groups.update(g)
 _inherited.update(i)

 return list(groups), list(_inherited)

[docs]def set_groups(name, context, groups_to_set=()):
 """Set the list of groups for principal with given ``name`` and in
 given ``context``.
 """
 name = unicode(name)
 from kotti.resources import LocalGroup
 DBSession.query(LocalGroup).filter(
 LocalGroup.node_id == context.id).filter(
 LocalGroup.principal_name == name).delete()

 for group_name in groups_to_set:
 DBSession.add(LocalGroup(context, name, unicode(group_name)))

def list_groups_callback(name, request):
 if not is_user(name):
 return None # Disallow logging in with groups
 if name in get_principals():
 context = request.environ.get(
 'authz_context', getattr(request, 'context', None))
 if context is None:
 # SA events don't have request.context available
 from kotti.resources import get_root
 context = get_root(request)
 return list_groups(name, context)

@contextmanager
def authz_context(context, request):
 before = request.environ.pop('authz_context', None)
 request.environ['authz_context'] = context
 try:
 yield
 finally:
 del request.environ['authz_context']
 if before is not None:
 request.environ['authz_context'] = before

def view_permitted(context, request, name=''):
 with authz_context(context, request):
 return view_execution_permitted(context, request, name)

def principals_with_local_roles(context, inherit=True):
 """Return a list of principal names that have local roles in the
 context.
 """
 from resources import LocalGroup
 principals = set()
 items = [context]
 if inherit:
 items = lineage(context)
 for item in items:
 principals.update(
 r[0] for r in
 DBSession.query(LocalGroup.principal_name).filter(
 LocalGroup.node_id == item.id).group_by(
 LocalGroup.principal_name).all()
 if not r[0].startswith('role:')
)
 return list(principals)

def map_principals_with_local_roles(context):
 principals = get_principals()
 value = []
 for principal_name in principals_with_local_roles(context):
 try:
 principal = principals[principal_name]
 except KeyError:
 continue
 else:
 all, inherited = list_groups_ext(principal_name, context)
 value.append((principal, (all, inherited)))
 return sorted(value, key=lambda t: t[0].name)

def is_user(principal):
 if not isinstance(principal, basestring):
 principal = principal.name
 return ':' not in principal

class Principals(DictMixin):
 """Kotti's default principal database.

 Look at 'AbstractPrincipals' for documentation.

 This is a default implementation that may be replaced by using the
 'kotti.principals' settings variable.
 """
 factory = Principal

 @request_cache(lambda self, name: name)
 def __getitem__(self, name):
 name = unicode(name)
 try:
 return DBSession.query(
 self.factory).filter(self.factory.name == name).one()
 except NoResultFound:
 raise KeyError(name)

 def __setitem__(self, name, principal):
 name = unicode(name)
 if isinstance(principal, dict):
 principal = self.factory(**principal)
 DBSession.add(principal)

 def __delitem__(self, name):
 name = unicode(name)
 try:
 principal = DBSession.query(
 self.factory).filter(self.factory.name == name).one()
 DBSession.delete(principal)
 except NoResultFound:
 raise KeyError(name)

 def iterkeys(self):
 for (principal_name,) in DBSession.query(self.factory.name):
 yield principal_name

 def keys(self):
 return list(self.iterkeys())

 def search(self, **kwargs):
 if not kwargs:
 return []

 filters = []
 for key, value in kwargs.items():
 col = getattr(self.factory, key)
 if '*' in value:
 value = value.replace('*', '%').lower()
 filters.append(func.lower(col).like(value))
 else:
 filters.append(col == value)

 query = DBSession.query(self.factory)
 query = query.filter(or_(*filters))
 return query

 log_rounds = 10

 def hash_password(self, password, hashed=None):
 if hashed is None:
 hashed = bcrypt.gensalt(self.log_rounds)
 return unicode(
 bcrypt.hashpw(password.encode('utf-8'), hashed.encode('utf-8')))

 def validate_password(self, clear, hashed):
 try:
 return self.hash_password(clear, hashed) == hashed
 except ValueError:
 return False

def principals_factory():
 return Principals()

 © Copyright 2012, Daniel Nouri and contributors.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

 		0.7.2

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		Kotti 0.6 documentation »

 All modules for which code is available

		kotti.security

 © Copyright 2012, Daniel Nouri and contributors.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

 		0.7.2

_static/plus.png

_static/down.png

_static/comment.png